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Explicit analysis of anisotropic planar waveguides
by the analytical transfer-matrix method
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1. INTRODUCTION
As integrated optical components are fabricated with in-
creasingly complicated processes, it becomes more and
more essential to analyze the propagation characteristics
of optical waveguides with accurate and simple tools.
Besides isotropic optical waveguides, anisotropic
waveguides have also been widely applied in optical de-
vices. In past decades, some analytical and numerical
methods have been presented to solve the propagation
characteristics of anisotropic waveguides. Gia Russo and
Harris used a ray-approach method1 to characterize an
anisotropic waveguide. A WKB method was proposed by
Ctyroky and Cada to analyze inhomogeneous anisotropic
planar waveguides.2 A 4 3 4 matrix algebra was
introduced3 by Yeh and developed4 by Visnovsky to inves-
tigate light propagation in an arbitrarily anisotropic me-
dium. Kolosovsky et al. also proposed a method on the
electromagnetic field distribution5 to characterize aniso-
tropic graded-index slab waveguides with arbitrary pa-
rameters. By the method of selecting zero elements in a
characteristic matrix,6 Walpita obtained the solutions for
step- and graded-index planar waveguides. Coupled-
mode theory was improved by Tsang and Chuang to ana-
lyze reciprocal anisotropic waveguides.7 Additionally,
the hybrid modes in planar uniaxial waveguides were cal-
culated based on a rigorous electromagnetic model.8

Besides analytical methods, some numerical ap-
proaches have been suggested to find the propagation con-
stants of anisotropic waveguides. The finite-element
method (FEM) has been well developed for analysis of an-
isotropic optical waveguides.9,10 Employing a unique
vector potential,11 the FEM can avoid spurious and non-
physical modes for anisotropic waveguides. The FEM
was also adopted to investigate anisotropic waveguides
with off-diagonal elements in the permeability tensor12

and with arbitrary cross sections.13 In addition to the
FEM, the finite-difference time-domain method14 and the
Lanczos–Fourier expansion (LFE) approach15 were intro-
duced to study asymmetric anisotropic waveguides. A
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finite-difference (FD) scheme16 was also used to analyze
complicated anisotropic structures of arbitrary index pro-
files with consideration of the refractive indices in the vi-
cinity of index discontinuities. Furthermore, the surface
integral equation method reported by Gaal17 was used to
determine the propagation character of an anisotropic
embedded waveguide by minimizing the quadratic differ-
ence of the longitudinal field components in the cladding
and the core along the dielectric interface. However, the
analytical methods can usually obtain only approximate
results, while the main deficiency of the numerical meth-
ods is a lack of physical insight.

Researchers keep seeking other methods with simplic-
ity, accuracy, and physical insight. Recently, an equiva-
lent attenuation vector (EAV) method based on transfer-
matrix analysis was proposed18 and improved19 to
characterize an isotropic waveguide with good accuracy.
In this paper, we begin by analyzing three- and four-layer
anisotropic waveguides with an analytical transfer-
matrix method, and then we apply an improved EAV
method to analyze an anisotropic waveguide with graded-
index distribution and discontinuous profile. It is proved
by examples that the method can be applied in aniso-
tropic waveguides reliably and accurately.

2. THEORY AND APPLICATIONS
For anisotropic planar waveguides where the principal
axes of anisotropy are parallel to the rectangular axes in
the coordinate system of the waveguide, as shown in Fig.
1, the dielectric tensor can be depicted in diagonal form as

e 5 e0F nx
2 0 0

0 ny
2 0

0 0 nz
2
G , (1)

where e0 is the permittivity in free space and nx , ny , and
nz are the refractive indices of an electric field polarized
parallel to the x, y, and z axes of the coordinate system,
respectively. In the following analysis, we take the z axis
2004 Optical Society of America
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as the propagation direction and assume that the refrac-
tive index varies with the x axis and that the waveguide
materials are lossless.

A. Three-Layer Anisotropic Waveguide
As shown in Fig. 2, for a three-layer anisotropic wave-
guide, nix , niy , and niz (i 5 0,1,2) are the refractive in-
dices of each layer. The thickness of the guiding layer is
h, and the superstrate and the substrate are semi-
infinite.

The electromagnetic field of a guided wave oscillates in
the guiding layer and exponentially attenuates in the su-
perstrate and the substrate. Guided modes in a planar
optical waveguide are divided into two types: transverse
magnetic (TM) mode and transverse electric (TE) mode,
according to the polarization direction of the electromag-
netic waves. For the TM mode, the magnetic field can be
expressed as

Hz~x ! 5 H A1 exp~ pTMx !, x < 0

B1 cos~k1
TMx ! 1 C1 sin~k1

TMx !, 0 , x , h

D1 exp@qTM~h 2 x !#, x > h

,

(2)

where

k1
TM 5

n1z

n1x
~k0

2n1x
2 2 b2!1/2,

pTM 5
n0z

n0x
~b2 2 k0

2n0x
2 !1/2,

qTM 5
n2z

n2x
~b2 2 k0

2n2x
2 !1/2,

k0 5 2p/l, l is the wavelength in vacuum, and b is the
propagation constant for the TM mode.

Based on thin-film theory and the boundary constraints
of electromagnetic fields, we can obtain a matrix equation
by employing an analytical transfer matrix:

Fig. 1. Principal axes of anisotropy in the coordinate system of a
waveguide structure.

Fig. 2. Coordinate system of a three-layer anisotropic wave-
guide and index distribution in each layer.
S Hz~h !

1

n2z
2

Hz8~h !D 5 F cos~k1
TMh !

n1z
2

k1
TM

sin~k1
TMh !

2
k1

TM

n1z
2

sin~k1
TMh ! cos~k1

TMh !
G

3S Hz~0 !

1

n0z
2

Hz8~0 !D . (3)

From Eq. (2), we have

A1S 1

2
qTM

n2z
2
D 5 F cos~k1

TMh !
n1z

2

k1
TM

sin~k1
TMh !

2
k1

TM

n1z
2

sin~k1
TMh ! cos~k1

TMh !
G

3S 1
pTM

n0z
2
D D1 . (4)

Solving the above matrix equation, we can finally get
the eigenequation of the three-layer anisotropic wave-
guide for the TM mode:

tan~k1
TMh ! 5

qTM

n2z
2

1
pTM

n0z
2

k1
TM

n1z
2

2
n1z

2

k1
TM

qTM

n2z
2

pTM

n0z
2

; (5)

that is,

k1
TMh 5 mp 1 tan21S n1z

2

n0z
2

pTM

k1
TMD

1 tan21S n1z
2

n2z
2

qTM

k1
TMD ~m 5 0,1,2,...!. (6)

For the TE mode, the electric field can be expressed as

Ez~x ! 5 H A2 exp~ pTEx !, x < 0

B2 cos~k1
TEx ! 1 C2 sin~k1

TEx !, 0 , x , h

D2 exp@qTE~h 2 x !#, x > h

,

(7)

where k1
TE 5 (k0

2n1y
2 2 b2)1/2, pTE 5 (b2 2 k0

2n0y
2 )1/2, qTE

5 (b2 2 k0
2n2y

2 )1/2, and b is the propagation constant for
the TE mode. Similarly, we can get the analytical
transfer-matrix equation

A2S 1
2qTED 5 F cos~k1

TEh !
1

k1
TE

sin~k1
TEh !

2k1
TE sin~k1

TEh ! cos~k1
TEh !

G S 1
pTEDD2

(8)

and the TE-mode eigenequation
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k1
TEh 5 mp 1 tan21S pTE

k1
TED 1 tan21S qTE

k1
TED

~m 5 0,1,2,...!. (9)

Equations (6) and (9) are the well-known result for the
guided-mode dispersion equation of the three-layer step
anisotropic waveguide for TM and TE modes. By intro-
ducing

k1 , p,q 5 H k1
TM , pTM,qTM for TM mode

k1
TE , pTE,qTE for TE mode

, (10)

fi 5 H niz
2 for TM mode

1 for TE mode
~i 5 0, 1, 2 !,

(11)

we can finally write the dispersion equation for the three-
layer anisotropic waveguide in unified form as

k1h 5 mp 1 tan21S f1

f0

p

k1
D 1 tan21S f1

f2

q

k1
D

~m 5 0,1,2,...!. (12)

B. Four-Layer Anisotropic Waveguide
The mode analysis for a four-layer anisotropic waveguide
is given as follows. As shown in Fig. 3, there are two
guiding layers. The guided wave may propagate in both
guiding layers when the propagation constant b is be-
tween k0n2 and k0n3 or merely in the first guiding layer
when b is between k0n1 and k0n2 while the electromag-
netic field in the second layer is evanescent, where ni (i
5 1,2,3) is written as nix for the TM mode and niy for the
TE mode. The two situations will be treated separately
in the following discussion.

1. k0n3 , b , k0n2
Just as in the three-layer case, we can obtain the matrix
equation of the four-layer configuration by multiplying
analytical transfer matrices in two guiding layers:

S 2
p0

f0
1 DM1M2S 1

2
p3

f3

D 5 0, (13)

where

Fig. 3. Index distribution of a four-layer anisotropic waveguide.
Mi 5 F cos~k ihi! 2
fi

k i
sin~k ihi!

k i

f i
sin~k ihi! cos~k ihi!

G ~i 5 1,2!,

k i 5 H k i
TM 5

niz

nix
~k0

2nix
2 2 b2!1/2 for TM mode

k i
TE 5 ~k0

2niy
2 2 b2!1/2 for TE mode

~i 5 1,2!,

p0 5 H p0
TM 5

n0z

n0x
~b2 2 k0

2n0x
2 !1/2 for TM mode

p0
TE 5 ~b2 2 k0

2n0y
2 !1/2 for TE mode

,

p3 5 H p3
TM 5

n3z

n3x
~b2 2 k0

2n3x
2 !1/2 for TM mode

p3
TE 5 ~b2 2 k0

2n3y
2 !1/2 for TE mode

,

fi 5 H niz
2 for TM mode

1 for TE mode
~i 5 0,1,2,3!.

The form of Mi is the so-called oscillatory analytical
transfer matrix. Similarly, we get the eigenvalue equa-
tion of the four-layer anisotropic waveguide:

k1h1 5 mp 1 tan21S f1

f0

p0

k1
D 1 tan21S f1

f2

p2

k1
D

~m 5 0,1,2,...!, (14)

where p2 is obtained by multiplying M2 and (
1

2p3 /f3). Af-
ter some algebraic transformation and employing

p2 5 k2 tanF tan21S f2

f3

p3

k2
D 2 k2h2G , (15)

we can rewrite Eq. (15) as

k2h2 1 F2 5 m8p 1 tan21S f2

f3

p3

k2
D ~m8 5 0,1,2,...!,

(16)

where F2 5 tan21( p2 /k2). Adding the left- and right-
hand sides part of Eqs. (14) and (16) gives the eigenvalue
equation of the four-layer anisotropic optical waveguide:

k1h1 1 k2h2 1 F~s !

5 mp 1 tan21S f1

f0

p0

k1
D 1 tan21S f2

f3

p3

k2
D

~m 5 0,1,2,...!, (17)

where F(s) 5 F2 2 tan21@( f1 /f2)(k2 /k1)tan F2#.

2. k0n2 , b , k0n1
The electromagnetic wave is evanescent in the second
layer when b is between k0n1 and k0n2 ; then k2 5 ia2 ,
where a2 is equal to (n2z /n2x)(b2 2 k0

2n2x
2 )1/2 for the TM

mode or (b2 2 k0
2n2y

2 )1/2 for the TE mode. Based on the
mathematical relations sin(ix) 5 i sinh(x) and cos(ix)
5 cosh(x), the analytical transfer matrix in the second

layer in the evanescent case is
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M2 5 F cosh~a2h2! 2
f2

a2
sinh~a2h2!

2
a2

f2
sinh~a2h2! cosh~a2h2!

G .

Here the form of M2 is called an evanescent analytical
transfer matrix. Similarly, p2 is expressed as p2
5 a2 tanh$tanh21@( f2 /f3)( p3 /a2)# 1 a2h2%.

Finally, the eigenvalue equation in such a situation is
rectified as

k1h 5 mp 1 tan21S f1

f0

p0

k1
D 1 tanh21S f1

f2

p2

k1
D

~m 5 0,1,2,...!. (18)

C. Graded-Index Anisotropic Waveguide
In Subsections 2.A and 2.B, the guided-mode equation in
step three- and four-layer anisotropic waveguides has
been investigated by an analytical transfer-matrix
method. The graded-index waveguide can be regarded as
a step multilayer waveguide if we divide the graded-index
profile into numerous step layers. In the following, we
employ the analytical transfer-matrix method in the case
of an anisotropic waveguide by introducing the improved
EAV concept. The improved analysis adopts an EAV to
characterize the evanescent field beyond the turning
point. Unlike WKB analysis, this method establishes
that the phase loss at a turning point is exactly equal to
p, independent of the wavelength, the propagation con-
stant, and the refractive-index profile, which is also
proved in the quantization condition.20

For a graded-index anisotropic waveguide, we take the
refractive-index profile as the following arbitrary form,
shown in Fig. 4:

nx~x ! 5 H nsx 1 Dnxf1~x/D1!, x > 0

ncx , x , 0
,

ny~x ! 5 H nsy 1 Dnyf2~x/D2!, x > 0

ncy , x , 0
,

nz~x ! 5 H nsz 1 Dnzf3~x/D3!, x > 0

ncz , x , 0
,

where nsx , nsy , nsz and ncx , ncy , ncz are the refractive
indices of the substrate and the cover, respectively, Dnx ,
Dny , and Dnz are index modulations, and f1(x/D1),
f2(x/D2), and f3(x/D3) are index profile functions. As a
practical example, this kind of index profile can be found
in an annealed proton-exchanged (APE) waveguide or a
Ti-diffused waveguide in lithium niobate.

xt is assumed as the turning point, and then the propa-
gation constant b can be calculated as b 5 k0nx(xt) (for
the TM mode) or b 5 k0ny(xt) (for the TE mode). Fur-
thermore, we assume that xs is close enough to the sub-
strate that nx(xs) and ny(xs) are equal to nsx and nsy , re-
spectively. There are l divided layers from x0 to xt and m
divided layers from xt to xs with uniform thickness h and
constant refractive indices nx(xi), ny(xi), and nz(xi) for
each layer, as shown in Fig. 4.
It is known that the electromagnetic wave has an expo-
nential convergence in the superstrate (x , 0) and an os-
cillatory behavior in the guiding area from x0 to xt , where
every divided piece can be characterized by an oscillatory
analytical transfer matrix. The electromagnetic field is
evanescent from xt to xs , where each divided slice can be
characterized by an evanescent analytical transfer ma-
trix.

According to transfer-matrix theory, we obtain the ma-
trix equation

S 2
pc

fc
1 D S )

i51

l

MiD S )
j5l11

l1m

MjD S 1

2
ps

fs

D 5 0, (19)

where

Mi 5 F cos~k ih ! 2
fi

k i
sin~k ih !

k i

f i
sin~k ih ! cos~k ih !

G ~i 5 0,1,2,...,l !,

Mj 5 F cosh~a jh ! 2
fi

a j
sinh~a jh !

2
a j

f j
sinh~a jh ! cosh~a jh !

G
~ j 5 l 1 1, l 1 2,...,l 1 m !,

with

k i 5 H k i
TM 5

niz

nix
~k0

2nix
2 2 b2!1/2 for TM mode

k i
TE 5 ~k0

2niy
2 2 b2!1/2 for TE mode

~i 5 0,1,2,...,l !,

a j 5 H a i
TM 5

njz

njx
~b2 2 k0

2njx
2 !1/2 for TM mode

a i
TE 5 ~b2 2 k0

2njy
2 !1/2 for TE mode

~ j 5 l 1 1, l 1 2,...,l 1 m !,

Fig. 4. Graded-index anisotropic waveguide with arbitrary in-
dex profile.
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pc 5 H pc
TM 5

ncz

ncx
~b2 2 k0

2ncx
2 !1/2 for TM mode

pc
TE 5 ~b2 2 k0

2ncy
2 !1/2 for TE mode

,

ps 5 H ps
TM 5

nsz

nsx
~b2 2 k0

2nsx
2 !1/2 for TM mode

ps
TE 5 ~b2 2 k0

2nsy
2 !1/2 for TE mode

,

fk ,fc ,fs 5 H nkz
2 ,ncz

2 ,nsz
2 for TM mode

1 for TE mode

~k 5 0,1,2,...,l 1 m !.

Now the EAV pt is used to describe the evanescent field
from the turning point to the substrate, and Eq. (19) be-
comes

S 2
pc

fc
1 D S )

i51

l

MiD S 1

2
pt

f~xt!
D 5 0. (20)

pt is determined by the following iterative equations:

pt 5 pl11 ,

pj 5 a j

pj11

a j

f j

f j11
1 tanh~a jh !

1 1
pj11

a j

f j

f j11
tanh~a jh !

pl1m11 5 ps , ~ j 5 l 1 1, l 1 2,...,l 1 m !, (21)

Similar to the conclusion for the four-layer anisotropic
waveguide in Subsection 2.B, we can obtain the following
dispersion equation for a graded-index profile:

(
i50

l

k ih 1 Fs 5 Np 1 tan21S f0

fc

pc

k0
D 1 tan21F f~xt!

fl11

pt

k t
G

~N 5 0,1,2,...!. (22)

Because k t 5 0 and tan21$@ f(xt)/fl11#( pt /kt)% 5 p/2, Eq.
(22) can be further written as

(
i50

l

k ih 1 Fs 5 Np 1 tan21S f0

fc

pc

k0
D 1

p

2
, (23)

where

Fs 5 (
i50

l21 H F i11 2 tan21F fi

fi11

k i11

k i
tan~F i11!G J ,

(24)

F i 5 tan21S pi

k i
D , (25)

pi 5 k i tanF tan21S fi

fi11

pi11

k i
D 2 k ihG

~i 5 1,2,...,l !. (26)

Furthermore, when the second-order minor term is ne-
glected, Eqs. (24) and (26) can be rewritten as
Fs 5 (
i50

l21 pi11fi11

pi11
2 1 k i11

2

3 ~k i /fi 2 k i11 /fi11!, (27)

pi11 /fi11 2 pi /fi

h
5

pi
2 1 k i

2

fi
2

. (28)

When the divided layers are infinitely increased, the
thickness h of each layer will approach zero. According
to the theory of integration and differential calculus,
( i50

l k ih in Eq. (23) can be expressed as
limh→0 (x50

x5xtk(x)h 5 *0
xtk(x)dx, and Fs in Eq. (27) can be

written as

lim
h→0

(
x50

x5xt2h p~x 1 h !f~x 1 h !

p2~x 1 h ! 1 k2~x 1 h !

3
@k~x !/f~x ! 2 k~x 1 h !/f~x 1 h !#

h
h

5 E
0

xt p~x !f~x !

p2~x ! 1 k2~x !
Ud@k~x !/f~x !#

dx
Udx.

Similarly, Eq. (28) is expressed as

lim
h→0

p~x 1 h !/f~x 1 h ! 2 p~x !/f~x !

h
5

p2~x ! 1 k2~x !

f 2~x !
,

and, furthermore, d@ p(x)/f(x)#/dx 5 @k2(x) 1 p2(x)#/
f 2(x).

Then Eq. (23) can be transformed into

E
0

xt

k~x !dx 1 E
0

xt p~x !f~x !

p2~x ! 1 k2~x !
Ud@k~x !/f~x !#

dx
Udx

5 Np 1 tan21S f0

fc

pc

k0
D 1

p

2
~N 5 0,1,2,...!, (29)

where

k~x !

5 H kTM~x ! 5
nz~x !

nx~x !
@k0

2nx
2~x ! 2 b2#1/2 for TM mode

kTE~x ! 5 @k0
2ny

2~x ! 2 b2#1/2 for TE mode

.

p(x) is determined by the following differential equation;

d@ p~x !/f~x !#

dx
5

k2~x ! 1 p2~x !

f 2~x !
, p~xt! 5 pt ,

(30)

where
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f~x ! 5 H nz
2~x ! for TM mode

1 for TE mode
.

As the subscripts i and i 1 1 indicate the neighboring
segments of layers in the guiding region, shown in Eqs.
(24) and (27), Fs is interpreted as phase contributions
from the scattered subwaves.20 If we set k i11 /fi11
5 k i /fi , which exists in the step-index profile, Fs 5 0
will be obtained, consistent with the above analysis of the
step-index case. Thus Eq. (29) shows a clear physical
meaning: The two terms or the left-hand side present
half of the phase contribution of the guiding waves and
the subwaves, and the second and third terms on the
right-hand side offer half of the phase loss at the interface
and the turning point, respectively. When the sum of
phase contributions and losses is equal to 2Np, the opti-
cal wave will be guided and propagate in the waveguide.

For the situation when two turning points occur, as
shown in Fig. 5, the dispersion equation can be straight-
forwardly presented, according to the above analysis, as

E
xt1

xt2

k~x !dx 1 E
xt1

xt2 p~x !f~x !

p2~x ! 1 k2~x !
Ud@k~x !/f~x !#

dx
Udx

5 ~N 1 1 !p ~N 5 0,1,2,...!. (31)

Fig. 5. Graded-index anisotropic waveguide with two turning
points.
D. Discontinuation in a Graded Anisotropic Waveguide
A discontinuous index profile is also considered, as shown
in Fig. 6. Figure 6(a) demonstrates a condition where a
discontinuous point is situated in the oscillatory region,
which provides an extra phase contribution, referred to as
Fd . From Eqs. (24)–(26), we can find that, at a given
point x,

p~x ! 5 k~x !tanH tan21F f~x !

f~x 1 h !

p~x 1 h !

k~x !
G 2 k~x !hJ ,

(32)

and the phase contribution of scattered subwaves of the
neighboring layers on the left and the right of point x is

F~x ! 5 tan21Fp~x 1 h !

k~x 1 h !
G 2 tan21F f~x !

f~x 1 h !

p~x 1 h !

k~x !
G .

(33)

When h → 0, we obtain

p~x 2 0 ! 5
f~x 2 0 !p~x 1 0 !

f~x 1 0 !
, (34)

F~x ! 5 tan21Fp~x 1 0 !

k~x 1 0 !
G

2 tan21F f~x 2 0 !

f~x 1 0 !

p~x 1 0 !

k~x 2 0 !
G . (35)

Then the extra inner phase contribution at the discon-
tinuous point xd can be calculated as

Fd 5 tan21Fp2~xd!

k2~xd!
G 2 tan21F f 1~xd!

f 2~xd!

p2~xd!

k1~xd!
G , (36)

where
Fig. 6. Discontinuous index profile in a graded-index anisotropic waveguide.
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k6~xd! 5 5
@k6~xd!#TM 5

nz
6~xd!

nx
6~xd!

$k0
2@nx

6~xd!#2 2 b2%1/2

for TM mode

@k6~xd!#TE 5 $k0
2@ny

6~xd!#2 2 b2%1/2

for TE mode

,

f 6~xd! 5 H @nz
6~xd!#2 for TM mode

1 for TE mode
.

Finally, just as for the continuous graded-index profile,
the dispersion equation for the discontinuous distribution
can be obtained:

E
xt1

xt2

k~x !dx 1 E
xt1

xd p~x !f~x !

p2~x ! 1 k2~x !
Ud@k~x !/f~x !#

dx
Udx

1 E
xd

xt2 p~x !f~x !

p2~x ! 1 k2~x !
Ud@k~x !/f~x !#

dx
Udx

1 Fd 5 ~N 1 1 !p ~N 5 0,1,2,...!. (37)

p(x) is determined by the following differential equation:

d@ p~x !/f~x !#

dx
5

k2~x ! 1 p2~x !

f 2~x !
,

p~xt! 5 pt ,

p1~xd! 5
f 1~xd!

f 2~xd!
p2~xd!. (38)

Another situation is depicted in Fig. 6(b), where the ef-
fective index is between n1(xd) and n2(xd). This situa-
tion can be solved very similarly to the continuous
graded-index profile. However, in this case, half of the
phase loss at the discontinuous point is
tan21$@ f1(xd)/f 2(xd)#@ pt /k1(xd)#% instead of p/2, for k1(xd)
is not equal to zero, which can be easily found from Eq.
(22). Thus the dispersion equation for such a situation
can be written as

E
xt1

xd

k~x !dx 1 E
xt1

xd p~x !f~x !

p2~x ! 1 k2~x !
Ud@k~x !/f~x !#

dx
Udx

5 S N 1
1

2 Dp 1 tan21F f 1~xd!

f 2~xd!

pt

k1~xd!
G

~N 5 0,1,2,...!. (39)

p(x) is determined by the following differential equation:

d@ p~x !/f~x !#

dx
5

k2~x ! 1 p2~x !

f 2~x !
, p1~xd! 5

f 1~xd!

f 2~xd!
pt

(40)

If the discontinuous point xd is beyond the turning point,
it can also be found that p1(xd) 5 @ f1(xd)/
f 2(xd)#p2(xd), which can be directly obtained evolved
from Eqs. (21) by setting h → 0.

It needs to be noted that Eqs. (29), (31), (37), and (39)
are approximate, for we have neglected the second-order
minor terms, that is, we consider just the phase contribu-
tion of the first-order scattered subwaves and the higher-
order subwaves are ignored. This approximation is
proved to be reasonable and reliable by various numerical
approaches in Section 3.

3. NUMERICAL RESULTS
To verify the reliability of the current method, we con-
sider diversified waveguide structures, as adopted in
Refs. 15 and 16. To realize a practical numerical ap-
proach, the thickness of the divided layer presented in our
analysis cannot be infinitely small, so a uniform thickness
of 5 mm is introduced for all simulations. For a four-
layer anisotropic waveguide, at a wavelength of 957.44
nm, the refractive index of each layer is given by n0,x,y,z
5 1.4526, n1x 5 1.6721, n1y 5 n1z 5 1.6738, n2x
5 1.5630, n2y 5 n2z 5 1.5622, and n3x,y,z 5 1.0, and the
thicknesses of the first guiding layer, h1 , and the second
guiding layer, h2 , are 591 and 600 nm, respectively. The
calculated values of b, which is defined as (Neff

2

2 n0x
2 )/(n1x

2 2 n0x
2 ) for each TM mode, are shown in Table 1

together with the results calculated with the TMM, FD-
BPM, and FD methods of Ref. 16. From the table, we can
see that the results of the present method are almost the
same as those of the other methods. In the numerical ap-
proach, we found that the TM1 and TM0 guided modes
just cover the two situations in the analysis of the four-
layer structure.

An annealed proton-exchanged (APE) waveguide in
lithium niobate that has a graded-index profile is used as
another example to testify to our theory. The proton-
exchange process increases the extraordinary index in the
guiding layer while decreasing the ordinary index; thus
one can stimulate only TM modes in Z-cut samples and
TE modes in X- and Y-cut substrates. After annealing,
both the extraordinary and ordinary indices redistribute
into a graded profile. Here we assume that the index dis-
tribution in an APE waveguide sample has the following
form:

ne~x ! 5 H nse 1 Dne expS 2
x2

D1
2D , x > 0

nce , x , 0

,

no~x ! 5 H nso 1 Dno expS 2
x2

D2
2D , x > 0

nco , x , 0

.

Table 1. Comparison of Calculated Values of b for
a Four-Layer Structure

TM
Mode

Present
Method TMM

FD-BPM
(Dx 5 3.9 nm)

FD
(W55 mm,

Dx 5 3.9 nm)

TM0 0.671163 0.671163 0.671158 0.671157
TM1 0.100807 0.100810 — 0.100816
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For a 632.8-nm He–Ne laser, nse 5 2.2, nso 5 2.286,
Dne 5 0.01, Dno 5 20.004, nce 5 nco 5 1.0, and D1
5 D2 5 5 mm. Comparisons of the effective index Neff
calculated with the present method and with the other
methods of Ref. 16 are shown in Table 2. It is easily
found that the values calculated with the present method
have a very good accuracy.

To further verify the universal applicability of the
method, we introduce a complicated discontinuous
refractive-index profile in a Ti-diffused proton-exchanged
(TIPE) LiNbO3 waveguide with SiO2 buffer and air cover.
At the wavelength of 632.8 nm, the index profile of the
TIPE 1 SiO2 waveguide sample is given by

ne~x !

5 5
nc , x < 21

nb , 2 1 , x < 0

nes 1 0.014 exp~2x2/32! 1 0.11, 0 , x < 1

nes 1 0.014 exp~2x2/32!, x . 1

,

no~x !

5 5
nc , x < 21

nb , 2 1 , x < 0

nos 1 0.009 exp~2x2/32! 2 0.04, 0 , x < 1

nos 1 0.009 exp~2x2/32!, x . 1

,

where nes 5 2.2, nos 5 2.286, nb 5 1.45, and nc 5 1.0.
To reliably cope with the discontinuous profile in the
above theory, we need to make some prior assumptions on
the effective index: above the discontinuous segment, in
the discontinuous segment, and under the discontinuous
segment. Each assumption should be implemented with
the corresponding dispersion equation to cover all poten-
tial stimulated modes. For an X-cut, Y-propagating
sample, the results of TE modes calculated by the current
method and the other methods of Ref. 16 are demon-
strated in Table 3. As shown in the table, the current
analytical method agrees quite well with the accurate nu-
merical schemes.

We finally analyze a symmetric discontinuous aniso-
tropic waveguide with nx(x) 5 1.65@1 2 0.115(x/d)2#1/2,
ny(x) 5 nz(x) 5 1.48@1 2 0.0135(x/d)2#1/2, and nc 5 ns
5 1.46, where 2d < x < d. TM modes of the wave-
guide are calculated at 860 nm. Just as in the last cal-

Table 2. Calculated Results of Effective Index Neff
for an Anisotropic Graded-Index Profile

Waveguide
Anisotropy Mode

Present
Method

TMM
(2000 layers)

FD
(W 5 25 mm,

500 grids)

Z-cut, TM0 2.207390 2.207393 2.207394
Y-propagation, TM1 2.204371 2.204374 2.204376
APE-LiNbO3 TM2 2.201986 2.201988 2.201990

TM3 2.200390 2.200390 2.200392

X-cut, TE0 2.207359 2.207362 2.207363
Y-propagation, TE1 2.204272 2.204274 2.204277
APE-LiNbO3 TE2 2.201850 2.201851 2.201854

TE3 2.200284 2.200284 2.200286
culation, the propagation constants in the discontinuous
distribution are presupposed for diversified situations,
and every condition is considered. The simulated results
of a normalized mode index bTM 5 (b2

2 k0
2nc

2)/(k0
2nx,max

2 2 k0
2nc

2) with a normalized frequency
V 5 k0d(nx,max

2 2 nc
2)1/2, in comparison with the

Lanczos–Fourier expansion (LFE) technique,15 are dem-
onstrated in Fig. 7. It can be found that the current ana-
lytical method is also in good agreement with the accu-
rate numerical approach.

4. CONCLUSIONS
In summary, a compact method based on an analytical
transfer-matrix method and an improved EAV assump-
tion is suggested to analyze an anisotropic planar wave-
guide. The eigenvalue equations are proposed by the
method for both TM and TE modes in explicit and ana-
lytical forms. A multilayer structure, graded-index dis-
tributions with one and two turning points, and discon-
tinuous profiles are separately investigated. It is shown
by examples that this method can obtain accurate results
compared with numerical methods, while it holds consid-
erable physical insight. The proposed phase contribution
of scattered subwaves and phase contribution at a discon-
tinuous point may serve to reliably model and design com-
plicated anisotropic waveguide configurations.

Fig. 7. Normalized mode index bTM 5 (b2 2 k0
2nc

2)/(k0
2nx,max

2

2 k0
2nc

2) with normalized frequency V 5 k0d(nx,max
2 2 nc

2)1/2 of
TM modes in a symmetric anisotropic waveguide.

Table 3. Calculated Values of Effective Index Neff
for an Anisotropic TIPE LiNbO3 Waveguide with

Discontinuous Profile

TE
Mode

Present
Method

TMM
(3000 layers)

FD
(W 5 15 mm, Dx 5 10 nm)

TE0 2.30851 2.30851 2.30851
TE1 2.26436 2.26436 2.26437
TE2 2.20703 2.20704 2.20705
TE3 2.20220 2.20221 2.20222
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