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With the emergence of engineered domain-inverted optical superlattices in recent years,
multiple quasi-phase-matching (QPM) can be achieved in a single chip crystal, and has
wide applications in frequency conversion. Of late, some approaches have been proposed
in constructing a domain-inverted optical superlattice in order to implement multiple
QPM. This paper briefly reviews the development of multiple QPM, and introduces
main applications and new approaches in this field.
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1. Introduction

Nonlinear crystal designs which exploit quasi-phase-matching (QPM) can achieve
considerable control over the wavelength conversion efficiency by modifying the
structure of the nonlinear crystal.1 QPM is widely used for optical parametric pro-
cesses because of its largest usable nonlinear optical coefficient and a wider range of
phase-matchable wavelengths compared with those of the conventional birefringence
phase-matching techniques.2−3 With the development of room temperature poling
technology, it is possible to achieve domain-inverting structures in ferroelectric crys-
tals such as LiNbO3, LiTaO3, KTiOPO4 and so on.4−13 QPM uses modulation
of the nonlinear coefficient of the crystal to compensate for the mismatch between
the wave vectors of the interacting light beams. Therefore, it substantially extends
the class of materials available to various nonlinear optical interactions.14−17 The
first kind of optical supperlattice is the periodic optical superlattice (POS), with a
periodic domain-inverting structure. POS has been widely utilized in LiTaO3,18,19

LiNbO3,20−25 KTP26 and other ferroelectric crystals.27,28

POS can provide only one reciprocal vector to compensate for the wave-vector
mismatch in a given nonlinear optical process, and has a narrow acceptance band-
width for pump wavelength and operating temperature. In order to solve these
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problems, the multiple QPM optical superlattice was proposed, which can provide
more reciprocal vectors to realize multiple parametric processes simultaneously.

2. One-Dimensional QPM

2.1. Quasi-periodical optical superlattice (QPOS)

In 1997, a nonlinear optical superlattice of LiTaO3 was designed and fabri-
cated, in which two anti-parallel 180± domain building blocks A and B were
arranged as a Fibonacci sequence.29 This structure is named Quasi-periodic opti-
cal superlattice (QPOS), which can provide more reciprocal vectors to satisfy
multi-quasi-phase-matching processes simultaneously than POS. The QPOS can
be fabricated using the pulse field poling technique at room temperature. The
phase matching condition in the second harmonic process of a QPOS can be writ-
ten as ∆k = k2ω − 2kω − Gm,n = 0, where k2ω, kω are the wave vectors of the
second harmonic and fundamental wave, respectively, and Gm,n is the reciprocal
vector which depends on the structure parameter. The second harmonic spectrum
of QPOS has been studied theoretically, and experimental realization of multiple
wavelength second-harmonic generation (SHG) is reported, with the conversion effi-
ciencies comparable with those of a POS. The results show that the QPOS may
be applied to some multiple wavelength SHG devices. Because more reciprocal
vectors can be provided by a QPOS, not only the multiple QPM SHG, but also
some coupled parametric processes, such as the third-harmonic generation (THG)
and fourth-harmonic generation (FHG), can be realized with high efficiency. In the
same year, for the first time, direct THG was gained with high efficiency by one
Fibonacci QPOS based on LiTaO3.30 As is shown in Fig. 1, for a Fibonacci QPOS,
the QPM conditions for THG are ∆k1 = k2ω − 2kω − Gm,n = 0 for SHG and
∆k2 = k3ω − k2ω − kω − Gm′,n′ = 0 for SFG.

Gm,n and Gm′,n′ are two different pre-designed reciprocal vectors of the QPOS
in Fibonacci sequences. The QPOS can provide two specially designed reciprocal
vectors: Gm,n is used to compensate the mismatch of wave vectors in the SHG
process, and Gm′,n′ is used to compensate the mismatch of wave vectors in the SFG
process. Two QPM conditions, ∆k1 = 0 and ∆k2 = 0, are simultaneously satisfied
in the coupled parametric process, which leads to a THG with high efficiency.

Fig. 1. Schematic diagram of the process of THG in a QPOS material.30
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Other QPOSs were proposed to meet different multiple QPM processes, such as
three-element Fibonacci structure and Thue-Morse structure31 and so on.

2.2. Aperiodic optical superlattice (AOS)

One question naturally raised is whether the QPOS with Fibonacci sequence is the
best candidate for nonlinear optical processes. An aperiodic optical superlattice
(AOS) is proposed in which the periodicity of the structure disappears. There are
two ways to construct an AOS, one is by optimization algorithms, another is by
modulation of the periodic structure. Theoretically, AOS contains more plentiful
Fourier spectral components than those in the QPOS, therefore, it can provide more
reciprocal vectors. Thus, it may be expected that the AOS can become another
favorable candidate for optical parametric devices.

2.2.1. AOS designed by optimization algorithms

The design of the AOS by optimization algorithms corresponds to an inverse source
problem in nonlinear optics.32 In this method, the crystal with total length L is
divided into N unit blocks with congruent length ∆L, and the polarization direction
of each block is upwards or downwards, described by the function d(z) = d33 · g(z),
when the largest nonlinear coefficient d33 is used. g(z) is the function taking binary
values of 1 or −1. Taking multiple SHG as an example and considering the small-
signal and slowly varying approximation, the pump depletion and transmission loss
not taken into account, the amplitude of the SHG wave produced is:

A2ω = i
2ω

n2ωc
A2

ω

∫ L

o

d(z) exp[−i∆k(λ)z]dz = i
2ω

n2ωc
A2

ωG(λ) (1)

G(λ) =
∫ L

o

d(z) exp[−i∆k(λ)z]dz. (2)

The conversion efficiency η from fundamental wave to second harmonics reads

η =
8π2 |d33|2 IωL2

cε0λ2n2ωn2
ω

∣∣∣∣∣
1
L

∫ L

o

g(z) exp[−i∆k(λ)z]dz

∣∣∣∣∣ , (3)

where nω(n2ω) is the index of refraction of the fundamental (second harmonics)
wave, c is the speed of light in vacuum, λ is the wavelength of the fundamen-
tal light in vacuum, ε0 is the dielectric constant in vacuum, and g(z) represents
the orientation of each block taking binary values of 1 or −1. ∆k(λ) = k2ω − 2kw

presents the phase mismatch between the fundamental wave and second harmonics,
where kω(k2ω) is the wavevector of the fundamental (second harmonics) wave. g(z)
is optimized by optimization algorithms. The first AOS structure realized by invert-
ing poled ferroelectric domains was reported in 1999, optimized by the simulated
annealing algorithm,33 as is shown in Fig. 2. The constructed AOS can implement
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Fig. 2. Schematic diagram of AOS.

multiple wavelengths second-harmonic generation and the coupled third-harmonic
generation with an identical effective nonlinear coefficient. The numerical simula-
tions show that the constructed AOS can enhance harmonic generation compared
with the Fibonacci optical superlattice. The influence of the random fluctuation of
the thickness of blocks on the performance of the constructed AOSs is also investi-
gated in detail for simulating practical fabrications.34

As we know, the conversion efficiency increases quadratically with the interac-
tion length, while the bandwidth scales inversely with the length. But the narrow
acceptance bandwidth for the fundamental wavelength and temperature, which
exceeds the tolerances on laser diodes due to the fluctuation of laser wavelength or
temperature, or due to errors in the fabrication process, critically limits the utility
of the QPM technique.35 The approach to obtain wide flattop bandwidth based
on aperiodic domain-inverted gratings is proposed.36 The sequences and the length
of the domains are optimized to realize the pre-designed wide bandwidth by the
simulated annealing (SA) method.

In summary, AOS can supply much more reciprocal vectors for multiple QPM
and implement pre-designed flattop response with the optimum sequence. It has
been employed to achieve QPM multiple and broaden-band wavelength conversion
in the past.37,38

In order to gain higher conversion efficiency and more flexible design, new
approaches were made based on AOS.39−41 An effective approach for designing the
AOS to separately achieve parametric amplification of multiple discrete wavelengths
is presented, with identical amplification coefficient at the prescribed wavelengths of
signal light.39 Using a similar approach, a new technique is described for designing
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QPM gratings which allows the SHG frequency response of a grating to be tailored
to any desired profile using a combination of analytic and numerical methods.40

In 2007, a new algorithm called the self-adjusting algorithm is proposed to
construct the AOS,41 in which multiple nonlinear optical parametric processes can
be realized simultaneously with high conversion efficiency in an extremely short
time, which is shown in Fig. 3.

Figure 3 shows the initial result without feedback optimization (a), the result
after one optimizing step (b) and the result after seven optimizing steps (c), respec-
tively. The four peak values at the designed wavelength after every step of optimiz-
ing are shown in (d). After three steps, the four peak values are very close to each
other. After seven steps, four peaks with identical effective nonlinear coefficients
of 0.229 at the designed wavelengths are found. Considering the effective nonlinear
coefficient of QPM SHG as a function of fundamental wavelength in AOS structure
optimized by the self-adjusting algorithm with N = 3000 and ∆L = 3.3 µm, the
designed wavelengths are 1060nm, 1082nm, 1283nm, 1364nm, respectively.

(a) (b)

(c) (d)

Fig. 3. The calculation results by self-adjusting algorithm.41
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The self-adjusting algorithm is based on the physical principle of the specific
nonlinear optical process, and uses a feedback function to avoid huge amounts of
tentative and repeating calculations, so that the calculation time is much shorter
than using other optimization algorithms which exist, such as simulated anneal-
ing algorithm (SA), genetic algorithm (GA), and so on. Besides, the self-adjusting
algorithm is independent of initial condition, so it is proven to be a more flexible
and effective algorithm to construct ideal AOS for multiple QPM processes.

2.2.2. AOS designed by modulation of periodic structure

The range of reciprocal vectors can be increased by perturbing the periodic struc-
ture, so that spectral components in wavevector domains can spread to the wings.
This method is widely used to broaden the phase matching bandwidth in QPM
SHG devices. Phase-shifted gratings,42 phase-reversal sequence (PRS) technique,43

segmented grating44−47 and other schemes have been proposed and investigated.
Segmented grating makes use of located phase shifts inserted into a periodic grat-
ing, as is shown in Fig. 4. The segmented QPM grating is supposed to be fabricated
in a Z-cut and X-propagating nonlinear crystal and consists of N segments. The
device total length is L. The length and the period of each segment are Li and Λi

(i = 1, 2, . . . , N). For segment m, the couple equations are expressed as48

dA1m

dx
= −jκA∗

1mA2me−j∆Φm

dA2m

dx
= −jκA2

1mej∆Φm , (4)

where A1 and A2 denote the amplitudes of the fundamental signal and the second
harmonic respectively. κ is the nonlinear coefficient, and ∆Φm is the phase mismatch
in segment m.

For segmented gratings, the QPM conditions are easily satisfied in relatively
wider laser wavelengths and a larger temperature region because of the enhancement
of bandwidth and temperature tolerance. The requirement of laser source stability

Fig. 4. Schematic description of the segmented QPM grating.48
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and environment temperature accuracy is greatly reduced. The greater the number
of segments, the broader the conversion bandwidth and temperature tolerance are,
however, the lower the conversion efficiency is.

Segmented gratings structure requires fine adjustment of the period and the
phase shifts. Many schemes have been demonstrated to broaden the bandwidth by
chirping grating periods.49−51 The physical origin of the bandwidth enhancement is
ascribed to the plentiful reciprocal vectors provided by the chirping grating periods.
The linearly chirped grating period is

Λ(x) =
Λ0

1 + (x − xQPM )
, (5)

where Λ0 = 2π/(k2ω − 2kω) is the periodic QPM grating period, xQPM is the
position of the exact phase matching point, and r is the chirp coefficient. The
linearly chirped grating is illustrated in Fig. 5, when the chirp coefficient r < 0 and
r > 0, respectively.

A broadband wavelength converter based on linearly chirped gratings in LiNbO3

crystal has been reported.52 The wavelength converter provides broader bandwidth
than that based on periodic gratings, which are commonly used for wavelength
conversion.

Other chirping grating periods, such as sinusoidally chirped optical superlattice
(SCOS), are proposed.53,54 For the SCOS, the period is expressed as

Λ(x)=
Λ0

1 + sin 2Nπx
L + 2Nπx

L cos 2Nπx
L

, (6)

where r is the chirp coefficient, L is the device length, N is the period number of
the sine function, Λ0 = 2π/(k2ω − 2kω) is the periodic QPM grating period. The
SCOS is schematically described in Fig. 6.54

Compared with segmented gratings and linearly chirped grating, SCOS will
greatly broaden the bandwidth and flatten the response, because more plentiful

(a)

(b)

Fig. 5. Schematic description of linearly chirped gratings. (a) Chirp coefficient r < 0; (b) chirp
coefficient r > 0.52
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Fig. 6. Schematic description of the SCOS structure.54

and flexible reciprocal wave vectors can be provided by SCOS. Difference-frequency
generation (DFG)-based wavelength conversion with (SCOS) is also reported.

2.3. Nonperiodic optical superlattice (NOS)

In the AOS theory, in order to achieve a pre-designed multiple QPM process, sam-
ples are divided into blocks with congruent length. The spontaneous polarization
direction of each block is determined by optimization algorithms. Although the
periodicity of domain inversion disappears in AOS, each block must be of one or
multiple fixed lengths. Therefore it is naturally expected that the arbitrary domain
length of a block in the optical superlattice will provide an even greater number of
flexible reciprocal vectors for QPM nonlinear optical processes than the AOS. A new
optical superlattice: nonperiodic optical superlattice (NOS) is proposed, in which
the limitation to block length disappears.55 In this paper, an ideal construction of
NOS for predesigned multiple QPM SHG processes is achieved by the combination
of stimulated annealing (SA) and genetic algorithm methods, as shown in Fig. 7.
Another scheme for constructing NOS is also reported,56 by which direct THG and
other multiple QPM processes can be generated with high efficiency. The numerical
simulations show that NOS can be used as a more effective and useful nonlinear
optical crystal for multiple nonlinear optical parametric generation.

3. Two-Dimensional QPM Techniques

1-dimensional (1-D) optical superlattice has been investigated in recent year. In
1998, V. Berger proposed extending the idea of QPM to multiple spatial dimen-
sions in much the same way as conventional linear gratings have been extended to
photonic crystals(PC),57 as is shown in Fig. 8.

Fig. 7. Gray-scale diagram of the NOS in part.56
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Fig. 8. Schematic picture of a 2-D optical superlattice.57

As the fabrication of a 3-D optical superlattice seems to be very tricky, recent
investigations mainly concentrate on the 2-D optical superlattice. In such a nonlin-
ear photonic crystal (NPC) there is a spatial variation of a nonlinear susceptibility
tensor while the refractive index is constant. The QPM condition appears as the
expression of the momentum conservation in such a NPC, for example, as a QPM
SHG process:

⇀

k2ω − 2
⇀

kω − ⇀

G = 0, where
⇀

G is the 2-D reciprocal vectors provided
by a 2-D optical superlattice, and generally,

⇀

k2ω and
⇀

kω are not parallel to each
other, as is shown in Fig. 9. Theoretically, reciprocal vectors will be provided by
the 2-D optical superlattice to satisfy multiple QPM processes simultaneously.57

Like the development of 1-D QPM, nonlinear frequency conversion in the 2-D
periodic optical superlattice (2DPOS) was first studied.58−63 It is shown that these

Fig. 9. Reciprocal vectors and QPM process in 2-D periodic hexagonal lattice.57
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Fig. 10. Nonlinear Ewald construction in 2-D periodic hexagonal lattice.57

(a)

(b)

Fig. 11. Phase-matching geometries for (a) the axially symmetrical ring and (b) the mirror-
symmetrical rings.63
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in-plane phase-matching resonances are given by a nonlinear Bragg law, and a
related nonlinear Ewald construction, as is shown in Fig. 10.57 Applications such
as multiple-beam second-harmonic generation (SHG), ring cavity SHG, or multiple
wavelength frequency conversion are envisaged.

The 2DPOS fabricated by field poling technique was reported,58 with a periodic
hexagonal lattice, in which QPM is obtained for multiple directions of propagation
with internal conversion efficiencies of 80%.

A new type of conical second-harmonic generation was discovered in a 2DPOS:
a hexagonally poled LiTaO3 crystal, and it reveals the presence of another type
of nonlinear interaction: a scattering involving optical parametric generation in a
nonlinear medium.63 Such a nonlinear interaction can be significantly enlarged in
a modulated χ(2) structure by a QPM process, as is shown in Fig. 11. The conical
beam records the spatial distribution of the scattering signal and discloses the
structure information and symmetry of the 2D χ(2) photonic crystal.

(a) (b)

Fig. 12. Generic QPM schemes for (a) THG, (b) FHG. Reciprocal lattice vectors G1 and G2

phase match quadratic interactions between jth harmonic wave vectors kj .
64

Fig. 13. A gray-scale diagram of the constructed 2DAOS in part. The black(white) blocks rep-
resent the positive(negative) domains.65
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Fig. 14. Effective nonlinear coefficient in the constructed 2DAOS, the calculated peak value of
effective nonlinear coefficient at the five given fundamental wavelengths is about 3.8 pm/V.65

THG and FHG were also studied in the 2DPOS.64 Reciprocal vectors were
provided by designed patterns to compensate for the phase mismatch among the
wave vectors involved in the THG and FHG processes, as is shown in Fig. 12, which
leads to THG and FHG with high conversion efficiency theoretically.

2DPOS extends the applications of the QPM technique and provides a new kind
of nonlinear optical crystal for various frequency conversion applications by nonlin-
ear optical processes. It can be naturally expected that a 2-dimensional aperiodic
optical superlattice (2DAOS), evolving from 1DAOS and 2DPOS, may realize even
more flexible QPM conditions in comparison with currently suggested approaches.65

The structure of the first 2DAOS is designed to implement multiple SHG with iden-
tical effective nonlinear coefficient by SA algorithm, Fig. 13 and Fig. 14. It is shown
that 2DAOS can expand the applications of QPM techniques and will be a new
nonlinear optical material for the optical frequency conversion process.

4. Conclusions

Engineered structures of optical superlattice are introduced to expand the amount
of the requisite superlattice reciprocal vectors greatly and make the multiple QPM
available in recent years. Advancements were made from a 1-dimensional to 2-
dimensional structure, and from POS to QPOS (quasi-periodic optical superlat-
tice), to AOS (aperiodic optical superlattice), to NOS (nonperiodic optical super-
lattice) and other complex structures. The multiple frequency conversion based on
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the multiple QPM schedule shows potential applications in nonlinear optics for laser
sources and optical information.
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