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Abstract: We study stimulated mode conversion and dynamics of Rabi-like 
oscillations of weights of guided modes in deeply subwavelength guiding 
structures, whose dielectric permittivity changes periodically in the direction 
of light propagation. We show that despite strong localization of the fields of 
eigenmodes on the scales below the wavelength of light, even weak longitu-
dinal modulation couples modes of selected parity and causes periodic energy 
exchange between them, thereby opening the way for controllable transforma-
tion of the internal structure of subwavelength beams. The effect is reminiscent 
of Rabi oscillations in multilevel quantum systems subjected to the action of 
periodic external fields. By using rigorous numerical solution of the full set of 
the Maxwell's equations, we show that the effect takes place not only in purely 
dielectric, but also in metallic-dielectric structures, despite the energy dissipa-
tion inherent to the plasmonic waveguides. The stimulated conversion of sub-
wavelength light modes is possible in both linear and nonlinear regimes. 
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1. Introduction 

Rabi oscillations are the periodic transitions (or revivals) between two stationary states of a quan-
tum system driven by the periodic external field. This is purely resonant effect, whose efficiency 
strongly depends on the frequency detuning between the external field and own oscillation fre-
quency of the quantum system. Since their prediction by I. Rabi in his seminal paper [1], such 
revivals and related resonant phenomena have been studied in a variety of atomic, optical, and 
condensed matter systems [2–5]. Especially fruitful was the extension of the concept of Rabi os-
cillations to various weakly guiding paraxial optical structures where light propagation is de-
scribed by the famous Schrödinger equation that also governs the evolution of the wavefunction 
in quantum-mechanical systems [6–16]. In such paraxial structures, Rabi oscillations manifest 
themselves as the periodic energy exchange between linear guided modes of the multimode struc-
ture, stimulated by weak periodic modulation of the refractive index in the direction of light 
propagation that plays the role similar to that of the external driving field for multilevel quantum 
system. Besides purely fundamental aspects, in optical systems the interest to Rabi oscillations is 
explained by the potential rich practical applications of this effect for the controllable shaping of 
laser radiation. Rabi oscillations were observed in dynamical long-periodic gratings created in 
optical fibers [7,8], they were studied in various shallow multimode waveguides [9] and mod-
ulated periodic lattices [10,11]. Especially interesting are realizations of Rabi oscillations in the 
two-dimensional systems, where longitudinal refractive index modulations may couple light 
modes with different topological charges [12–17]. Notice, that sometimes equations, similar to 
those describing dynamics of Rabi oscillations, may be encountered in periodic guiding structures 
without any longitudinal variations [18,19]. 

So far, the dynamics of optical Rabi oscillations was analyzed mostly in the paraxial multi-
mode guiding structures, where all characteristic scales (beam and waveguide widths) substan-
tially exceed the wavelength. In this case the coupled-mode approach applied to the Schrödinger 
equation, governing light evolution, yields equations for mode amplitudes analogous to those for 
populations of levels in a driven quantum system. On the other hand, last decade has witnessed 
rapid advances in nanotechnologies that already allow fabrication of optical waveguides with 
subwavelength dimensions [20,21]. Considerable waveguide depths can be achieved (strong 
guiding regime), so that eigenmodes of such structures also become subwavelength. Especially 
fruitful is the combination of dielectrics and metals allowing to confine light due to the excitation 
of surface plasmon polaritons (SPPs) [22]. In such structures one has to resort to solution of the 
full set of Maxwell's equations, since the paraxial approximation fails to describe light evolution. 
A general question arises – are Rabi oscillations possible in the modulated subwavelength struc-
tures and to which extent this effect can be used for shaping of narrow light beams? 

In this paper we address Rabi oscillations in subwavelength dielectric and metal-dielectric 
waveguides and show that this effect persists at the subwavelength scales and can be used to con-
trol the modal structure of the output beams. Longitudinal modulation of the dielectric permittivi-
ty in the waveguide region results in a highly selective excitation of modes of proper parity, while 
efficiency of this process is controlled by the detuning of modulation frequency from the resonant 
value. Efficient mode conversion can be achieved at very short propagation distances 20 mm . 
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2. The model and coupled mode theory 

We consider the propagation of a TM-polarized light beam along the z -axis of a subwavelength 
waveguide with longitudinally modulated dielectric permittivity. The evolution of nonzero com-
ponents of the electric x z( , 0, )E E=E  and magnetic y(0, , 0)H=H  fields for selected polariza-
tion state is governed by the reduced system of Maxwell's equations: 
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where we have excluded the longitudinal component z 0 y[ / ( , ) ] /E i x z H xe e w= ¶ ¶  of the electric 
field for convenience; 0e  and 0m  are the vacuum permittivity and permeability; and w  is the 
frequency of light. The function ( , )x ze  describes the relative permittivity of the guiding struc-
ture. In the case of dielectric waveguide we set 

 2 2
bg( , ) [1 sin( )]exp( / ),zx z p z x ae e d w= + + -  (2) 

where bge  is the relative background permittivity. The function (2) describes the profile of Gaus-
sian waveguide with width a  and depth p , which oscillates along the propagation direction with 
the amplitude d  and frequency zw . For convenience we denote dynamically varying part of di-
electric permittivity as 2 2

lin( , ) sin( )exp( / )zx z p z x ade d w= - . 
In the absence of longitudinal modulation ( 0)d= , all eigenmodes propagate independently 

and the power concentrated within each mode remains unchanged. Longitudinal permittivity 
modulation inside the waveguide couples different modes and stimulates energy exchange be-
tween them. Before we go to the numerical simulations of Eq. (1) and (2), it is instructive to con-
sider the dynamics of this process using coupled-mode approach [6,23]. In this approach we use 
Lorentz reciprocity formula m u u m m u m u( ) ( )iw e e* * *⋅ ´ + ´ = -H E H E E E  that links the fields 
m m{ , }E H  in the waveguide with longitudinally modulated permittivity me e=  with those 
u u{ , }E H  in the unmodulated guide with ue e= , where m u line e de- = . The field in the mod-

ulated waveguide can be represented as a superposition 

 m m{ , } ( ) { , }ni z n n
nn
a z e b=åE H E H   

of eigenmodes with z -dependent amplitudes ( )na z . A similar representation can be used for 
u u{ , }E H  but with constna = . We substitute fields in such form into reciprocity formula, inte-

grate it with respect to transverse coordinate x , and, taking into account the orthogonality condi-
tion z ( )n k nkdx d*⋅ ´ =ò e E H , arrive to the coupled-mode equations for amplitudes ( )na z : 

 exp[ ( ) ],n
nm m n mm

da
i a i z
dz

w b b= -å   (3) 

where z -dependent coefficients ( )nm z  are given by: 

 lin x y2 ( ) / Re( ) ,n m n m n n
nm x x z zE E E E dx E H dxde * * *= +ò ò  (4) 

Taking into account variation of lin sin( )zzde w  along the propagation distance, one can see 
that energy exchange between modes n  and m  will be most efficient if the resonance condition 

0m n zb b w-  =  is satisfied, provided that the modes have the same symmetry, so that corres-
ponding integral in the numerator of (4) is nonzero. 

3. Numerical results and discussion 

Rabi oscillations occur in multimode guiding structures. We search numerically for eigenmodes 
of the unmodulated ( 0)d=  subwavelength Gaussian waveguide in the form { ( , ), ( , )}x z x z =E H  

#231816 - $15.00 USD Received 2 Jan 2015; revised 18 Feb 2015; accepted 18 Feb 2015; published 3 Mar 2015 
© 2015 OSA 9 Mar 2015 | Vol. 23, No. 5 | DOI:10.1364/OE.23.006731 | OPTICS EXPRESS 6733 



{ ( ), ( )}exp( )n n
nx x i zbE H . The components of vectors ( ), ( )n nx xE H  describe the transverse 

field distributions, while nb  are the propagation constants of the modes with indexes 1,2,...n= . 
We consider an illustrative situation when the waveguide supports three guided modes. This oc-
curs for the following parameters: bg 2.25e = , 2p= , and 250 nma= . The width of the wave-
guide a  is substantially smaller than the wavelength 632.8 nml= . The profiles of the trans-
verse x( )E  and longitudinal z( )E  electric field components in all three guided modes are shown 
in Figs. 1(a) and 1(b), respectively. Modes are confined on the scale comparable with the wave-
length l . The longitudinal field component is comparable in amplitude with the transverse field 
one. The symmetry of Maxwell's equations dictates that zE  is antisymmetric for symmetric xE  
and that the number of nodes in zE  always exceeds by one the number of nodes in xE . In the 
following, when we mention the parity of the mode, we refer to the shape of the xE  component. 

The propagation constants of the eigenmodes depicted in Figs. 1(a) and 1(b) are given by 
1 01.919kb » , 2 01.689kb » , 3 01.531kb = , where 0 /k cw=  is the vacuum wavenumber. From 

the coupled mode equation [Eq. (3)], due to nonzero coefficient 13 , the coupling is expected to 
occur for the first and third modes with equal parity at 1 3 00.389r kw b b= - »  that corresponds 
to a modulation period 2 / 1.63 mrwp m» . Notice, that efficient coupling between first and 
second modes is impossible for symmetric permittivity perturbations ( , ) ( , )x z x ze e- = , since 
corresponding coupling coefficient 12  vanishes (coupling of these modes requires perturbations 
that break the symmetry of e , such as transverse oscillations of the waveguide center). 

 

Fig. 1. Transverse (a) and longitudinal (b) electric field distributions in three linear eigenmodes of 
Gaussian waveguide with 2p =  and 250 nma = . Transverse (c) and longitudinal (b) electric 
field distributions in three eigenmodes supported by the dielectric slab with 600 nma =  and 
2p =  surrounded by metal with Re 20me =- . 

The efficient coupling of the first and third modes of the subwavelength waveguide due to re-
sonant ( )z rw w=  longitudinal modulation is illustrated in Figs. 2(a) and 2(b). The results are 
obtained by direct solution of Maxwell's Eqs. (1) with finite-element method [24]. In Fig. 2(a) 
only the first mode was provided at the input, while in Fig. 2(b) only the third mode was pro-
vided. One can observe gradual transformation of the initial bell-shaped field distribution into 
three-hump distribution, characteristic for the third guided mode. In agreement with Eqs. (3), 
after accumulation of the power in the third mode, the reverse process starts and power flows 
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back into the first mode. This results in periodic Rabi oscillations having for 0.1d=  the period 
as short as 86 mm , irrespectively of the input mode index n . 

 

Fig. 2. (a),(b) Dynamic of resonant nonparaxial mode conversion at 0.1d =  in dielectric structure 
at 00.389z r kw w= » , when only first or third mode is provided at the input. The propagation dis-
tance and transverse window size are 130 mm  and 4 mm , respectively. (c),(d) Dynamics of mode 
conversion at 0.1d =  and 00.232z r kw w= »  in metal-dielectric-metal structure. The propaga-
tion distance and transverse window size are 75 mm  and 2 mm , respectively. Only 2

xE  distri-
bution is shown. 

The efficiency of mode conversion can be quantified using instantaneous weights of the mod-
es 2( ) ( )n nz c zn = , where 

 x y x y( ) ( , ) / ,n n n
nc z E x z H dx E H dx

¥ ¥
* *

-¥ -¥
=ò ò  (5) 

are the complex coefficients determining modal composition of the transverse component of the 
electric field x( , )E x z  at the distance z , while x y( ), ( )n nE x H x  characterize field distributions in 
eigenmodes. The dependencies ( )n zn  corresponding to dynamics from Figs. 2(a) and 2(b) are 
shown in Figs. 3(a) and 3(b). One can see that decrease in 1n  is accompanied by the growth of 
the weight of the third mode 3n  and vice versa, that indicates on resonant coupling of these two 
modes. At the same time, second mode is not excited and its weight 2n  remains nearly zero. 
While modal field structure is in fact recovered after one period of oscillations, radiation and 
backward reflections, unavoidable for modulation depths d  and periods 2 / zp w  considered here, 
slightly reduce the output quantity 1 2 3n n n+ + . This circumstance is not accounted for by 
coupled-mode approach and can be captured only by solution of the full set of Maxwell's equa-
tions. Radiative losses rapidly decrease with decrease of d . 

Stimulated mode conversion is the resonant effect. While in resonance nearly all power is 
transferred between modes, the efficiency of conversion drops down with increase of the detun-
ing of modulation frequency from the resonant one. In Fig. 4(a) we show maximal weight of the 
third mode max

3n  acquired upon propagation as a function of the modulation frequency in the 
case, when only first mode is launched into structure at 0z= . The resonance is symmetric in zw  
– its width depends on the depth of the longitudinal permittivity modulation. The width of the 
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resonance zdw , defined at the level max
3 3 /2n n= , increases with d  almost linearly [Fig. 4(b)]. 

For small d  values resonant excitation of higher-order modes (in the case when structure sup-
ports several of them) can be made highly selective due to small resonance width. Another im-
portant quantity that characterizes the process considered here is the conversion length, or period 
of Rabi 

 

Fig. 3. Mode weights 2
k kcn =  versus propagation distance for 1 3«  and 3 1«  resonant tran-

sitions. The dependencies ( )k zn  in (a),(b) correspond to evolution dynamics shown in Fig. 2. 

 

Fig. 4. (a) Maximal weight of the third mode versus modulation frequency at 0.1d =  in the linear 
medium. Resonance width (b) and effective coupling distance at z rw w=  (c) versus refractive in-
dex modulation depth d  in the linear medium. (d) Maximal weight of the third mode versus mod-
ulation frequency in focusing medium for peak nonlinear contribution to the refractive index 

nl 0.02n =  and 0.1d = . 

oscillations cz , defined here as a distance at which most of the power returns back to the input 
eigenmode at z rw w= . In accordance with coupled-mode approach, where coupling distance 
evolves 131/  , with 13 d , one observes in Fig. 4(c) rapid decrease of cz  with increase of 
the permittivity modulation depth d . One should stress that in this structure the complete trans-
formation of the shape of subwavelength light spots can be achieved at propagation distances as 
short as 20 mm , provided that the permittivity modulation depth d  is large enough. 
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So far, Rabi oscillations were considered only in dielectric guiding structures. The question 
arises whether similar effect can be observed in metal-dielectric waveguides, where the presence 
of metal allows to easily achieve light confinement at the subwavelength scales. We thus consider 
metal-dielectric-metal waveguide, whose permittivity is given by Eq. (2) for 300 nmx £  and 
by ( , ) 20 0.19x z ie =- -  (permittivity of silver at 632.8 nml= ) for 300 nmx > . The shapes 
of eigenmodes of such a waveguide strongly differ from those in purely dielectric structures and 
the modes are more confined, but one still can see that the first and third modes are symmetric, 
while second mode is antisymmetric [Figs. 1(c) and 1(d)]. We found that despite losses in metal, 
the resonant longitudinal permittivity modulation in the dielectric region still results in efficient 
coupling between first and third modes in such a structure, as shown in Figs. 2(c) and 2(d). 

Finally, Rabi oscillations are possible in the presence of focusing nonlinearity in the dielec-
tric. We account for nonlinear response of the material by assuming that permittivity (2) includes 
an additional term 2 2

nl 2 x( )zn E Ede = + , where 2 0n >  is the nonlinear coefficient. Solution 
of the Maxwell's Eqs. (1) reveals that weak focusing nonlinearity reduces the conversion length 
cz  [this is a direct consequence of the increase of the effective waveguide depth leading to 

growth of the overlap integral 13  in (4)], and also shifts the exact resonance frequency to a 
higher value [Fig. 4(d)]. The latter fact can be explained taking into account that nonlinearity acts 
differently on propagation constants of eigenmodes, leading to higher growth of 1b  in compari-
son with 3b , thereby increasing the difference 1 3b b- . The nonlinear resonance curve becomes 
slightly asymmetric. 

4. Conclusion 

In this paper, we have demonstrated that the Rabi oscillations are possible in various deeply sub-
wavelength guiding structures (with widths down to 100 nm ) including subwavelength dielectric 
waveguides and metal-dielectric-metal guiding structures, where the dynamics is governed by 
Maxwell's equations. Rabi oscillation for subwavelength modes may occur at very short propaga-
tion distances (about tens of microns), without considerable backward reflections, in both linear 
and nonlinear regimes. This enables controllable shaping of deeply subwavelength lights spots at 
extremely short distances. 
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