High harmonic optomechanical oscillations in the lithium niobate photonic crystal nanocavity

Haowei Jiang, Xiongshuo Yan, Hanxiao Liang, Rui Luo, Xianfeng Chen, Yuping Chen, and Qiang Lin

ARTICLES YOU MAY BE INTERESTED IN

Anisotropic domains and antiferrodistortive-transition controlled magnetization in epitaxial manganite films on vicinal SrTiO$_3$ substrates
Applied Physics Letters 117, 081903 (2020); https://doi.org/10.1063/5.0016371

Lithium-niobate-on-insulator waveguide-integrated superconducting nanowire single-photon detectors
Applied Physics Letters 116, 151102 (2020); https://doi.org/10.1063/1.5142852

Incorporation of erbium ions into thin-film lithium niobate integrated photonics
Applied Physics Letters 116, 151103 (2020); https://doi.org/10.1063/1.5142631
High harmonic optomechanical oscillations in the lithium niobate photonic crystal nanocavity

Cite as: Appl. Phys. Lett. 117, 081102 (2020); doi: 10.1063/5.0016334
Submitted: 4 June 2020 • Accepted: 17 August 2020 •
Published Online: 25 August 2020

Haowei Jiang,1 Xiongshuo Yan,1 Hanxiao Liang,2 Rui Luo,3 Xianfeng Chen,3 Yuping Chen,1,a) and Qiang Lin3,b)

AFFILIATIONS
1 State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
2 Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York 14627, USA
3 Institute of Optics, University of Rochester, Rochester, New York 14627, USA

a) Author to whom correspondence should be addressed: ypchen@sjtu.edu.cn
b) Electronic mail: qiang.lin@rochester.edu

ABSTRACT

We explore the optomechanical coupling in an on-chip lithium niobate (LN) photonic crystal nanocavity. A mechanical frequency shift and nonlinear mechanical oscillations are observed with the intracavity power increasing. A 14th harmonic oscillation is generated at the intracavity power of 430 \(\text{W} \) in the LN photonic crystal, which potentially can function as a mechanical frequency comb. The photonic crystal structure also shows the positive temperature coefficient of frequency, while the LN crystal has a negative intrinsic temperature coefficient. These characters of optomechanics in LN may play important roles in photon-phonon coupling or detector systems such as sensitive displacement and the mass and force detection.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0016334

Lithium niobate (LN) has been widely studied and applied in the past few decades.1–3 Thanks to its rich properties, lithium niobate has been used to demonstrate many on-chip optical devices. Efficient photon-pair source4 and frequency doubler5,6 are designed relying on its high nonlinear coefficient. Benefiting from the high electro-optic coefficient, lithium niobate modulators7,8 have even been commercially used. Photonic crystal nanocavities exhibit superior capability of confining light in sub-wavelength dimension and, thus, are of great promise for light-matter interactions.9–12 Recently, we have developed high-quality one-dimensional photonic crystal nanobeam resonators on the LN platform,13 with optical Q up to \(\sim 10^9 \) while maintaining a small effective mode volume of \(\sim (2R)^3 \). In this paper, we utilize this type of device to demonstrate nonlinear optomechanical oscillations in the lithium niobate photonic crystal nanobeam.

Cavity optomechanics has shown to be an attractive field exploring the interaction between optical signals and mechanical motions.14 The radiation pressure, raised up from the momentum transfer of photons and known as optical tweezers, has performed well in trapping dielectric particles.15 What is more, quite a few of applications based on optomechanics have been demonstrated these recent years, such as microcavity cooling,16 bio-sensing with cavity optomechanical spring,17 and sensitive displacement sensors.18

Here, we present the measured optomechanics properties in a LN photonic crystal nanocavity. With the intracavity power of the LN device increasing, not only the mechanical resonance shifts and heats up but also harmonic oscillations up to 14th order are observed in the LN photonic crystal nanocavity.

The one-dimensional photonic crystal nanocavity with a 40 \(\mu \text{m} \) length [Fig. 1(a)] was fabricated on a 300 nm X-cut congruent LN-on-insulator (LNOI) wafer. The structure is patterned using electron beam lithography with ZEP-520A positive resist and etched by argon-ion milling. The buried silica layer between the LN nanobeam and the silicon substrate is finally undercut by diluted hydrofluoric acid to form a suspended photonic crystal nanocavity. The inset of Fig. 1(a) is the top view of two unit cells of the device. The LN photonic crystal nanocavity has dimensions of the width \(w = 750 \text{ nm} \) and a lattice constant of 545 nm. It has a thickness of 250 nm, with a 2-\(\mu \text{m} \) gap from the silicon substrate. More details about the device design and fabrication can be found in our previous literature.19

In the LN photonic crystal nanocavity, considering the under-coupled condition, the optical mode transmission \(T(\lambda) \) is modified by...
the shift of the mechanical resonator position dx, as the following equation:\(^\text{19}\)

$$dT = \left(g_{OM} \frac{\partial T}{\partial \omega_0} + g_e \frac{\partial T}{\partial \gamma} \right) dx.$$ \hspace{1cm} (1)

The mechanical motion dx of the nanobeam cavity can modulate the external photon decay rate γ into the coupling taper fiber, with the external dissipative coupling coefficient of $g_e = d\gamma_e/dx$. The optical force can also raise up the other mechanical motion that modifies the nanocavity size, resulting in a dispersive coupling to the cavity frequency ω_0, with a coupling coefficient of $g_{OM} = d\omega_0/dx$. Here, we notice that the dissipative optomechanical signal depends linearly on the unipolar parameter of $|\partial T/\partial \gamma|$, and the dispersive optomechanical signal is in a linear relationship with the bipolar parameter of $|\partial T/\partial \omega_0|$. The two couplings have different power density spectra. In the case of dissipative coupling, the maximum power density can be obtained at the center of the optical mode. However, a valley can be observed in mechanical power spectral density at the center wavelength of the optical mode for the dispersive mode [Figs. 1(b)–1(d)].

Figure 2 shows the schematic of the experimental setup, where a tunable continuous-wave laser (New Focus TLB-8800) is used as a light source. 1% of the laser is split into a Mach–Zehnder interferometer to calibrate the optical frequency detuning. 99% of the laser followed by a variable optical attenuator (VOA) and polarization controller (PC) then launched into a tapered and dimpled optical fiber to couple light into and out of the LNOI device. 5% of the output power from the LNOI device supplies a feedback to the lock box and helps stabilize the laser. The major part of the laser launched into device raises up an optomechanical coupling, and a set of mechanical modes are encouraged and can be observed from the real-time spectrum analyzer. In addition, the LN chip was placed on a thermoelectric cooler (TEC) with a fixed temperature set at $27 \degree C$. The temperature of the TEC was stabilized by a temperature controller to prevent the temperature induced drifting of the device.

To identify the optomechanical coupling, we need to select a proper intracavity power, which is enough to excite a measurable mechanical mode and not too high to lock the laser at both sides of the optical mode. In our experiment, with the highest intracavity power at the mode center about $8 \mu W$, the optical transmission and the power spectral density curve can be achieved [Figs. 3(a) and 3(b)]. It is worth stating that uneven wavelength sampling of Fig. 3(b) is just because of the limited laser accuracy that we can control. A valley is clearly located at the center of the power density curve, corresponding to the same wavelength of the center of the optical mode.

The device used in this work has an optical mode at the wavelength of 1504.7 nm, with a Q-factor of 6.29×10^4 [Fig. 3(c)]. Excluding the background spectrum that already has some radio frequency signals without intracavity power in the LN device, the strongest mechanical signal is at the frequency of 1.7 MHz, which turns out to come from a dispersive coupling. The intrinsic quality factor of the 1.7 MHz mechanical mode is 65.38 in the air environment [Fig. 3(d)]. We will concentratedly study around the 1.7 MHz mechanical mode in this paper.

To characterize the power dependence of the optomechanical oscillation, still we lock the laser halfway down on the blue side of the optical resonance. Figure 4 shows the mechanical frequency and measured power, dependence with the intracavity power varying in a large range from 4.3 μW to 430 μW. The mechanical resonance experiences a linear frequency shift in Fig. 4(a), with the power rising up, at a rate of about 625 Hz/μW. As shown in Fig. 4(b), the mechanical mode power density increases slowly with the intracavity power before 100 μW. After that, it experiences a strong heating up with the intracavity power increasing. However, something interesting happens:
when the intracavity power comes to 150 μW, the mechanical power density slows down. The mechanical mode increasing stopped after 220 μW, and a slow dropping down can even be observed when the intracavity power goes on increasing. Until now, we mainly focus on characterizing the dispersive coupling induced mechanical resonance at the frequency of about 1.7 MHz. The saturation of the mechanical model intensity after 220 μW seems it does not meet the principle of energy conservation, which means that the extra applied energy must have gone to somewhere else.

To figure out what happened to the nanocavity after 150 μW, we check the mechanical frequency from 0 to 8 GHz. Comparing the distribution of modes with the intracavity power below and above 150 μW, the major difference appears at the frequency of 40 MHz (Fig. 5). In Fig. 5, the intracavity powers of blue, red, orange, and purple curves are 0 μW, 43 μW, 136 μW, and 430 μW, respectively. There are some additional small peaks shown as the first curves are environmental noise. To characterize detailedly the difference in mechanical oscillation, we set the spanning range from 0.5 MHz to 29.5 MHz and take more detailed power dependent data as shown the inset figure in Fig. 5. In Fig. 5, the first peak from the left is the fundamental mechanical mode, which has the same intensity trend as shown in Fig. 4(b). The second peak with a twice frequency is a second harmonic oscillation signal. At most, a 14th harmonic oscillation at the frequency of about 27.2 MHz is observed in testing. The mechanical harmonic generation turns out to be a step-by-step process. The fundamental oscillation heating up process slows down at around 150 μW, and the 2nd harmonic mode arises at the same time. Then with the power going up, the third, fourth, and more harmonic mode arise one-by-one, which is similar to a "nonlinear mechanical oscillator." In the low intracavity power condition, the radiation-pressure arising from the momentum transfer of photons cannot show the obvious high oscillations, and then it is hard to measure it. With the intracavity power increasing and exceeding a certain value (220 μW in
In addition, the device is found experiencing differently with temperature changing. To characterize the temperature dependence of the device, the TEC’s temperature setting is accurately modified by the temperature controller. The temperature scanning range is from 19.5 °C to 27.5 °C, by the step of 0.5 °C. The tunable laser is locked halfway down on the blue side of the optical mode, and the intracavity power is fixed at 21.5 μW. Figure 6 shows the mechanical spectra obtained from a Real-time spectrum analyzer (RSA) with different temperature settings. It tells that the mechanical mode intensity does not show a change while the mode frequency experiences a continuous shift with the temperature increasing. The mechanical frequency of the nanocavity shows a positive temperature coefficient, at a rate of 30 kHz/°C, which is equivalent to a rate of about 2%/°C. We know that bulk LN would become mechanically soft with an increasing temperature because of the negative correlation between the stiffness constant and the temperature. Therefore, the mechanical mode frequency may decrease with the temperature increasing. However, there are different cases for our device on the LNOI. Thin film SiO2 in the LNOI can be used to compensate the relative temperature dependence of the stiffness constant of LN, which can make the positive temperature coefficient of frequency (TCF). We think that is one of the main reasons that we can observe the mechanical frequency has a strong positive response to temperature in our device. Although our photonic crystal nanobeam is suspended, the other region of the LN thin film is involved in the thin film SiO2.

In conclusion, the optomechanical coupling in the photonic crystal nanocavity introduces interesting phenomena. While characterizing the power dependence, we noticed that the mechanical mode heating up slows down after a specific power. Nonlinear mechanical oscillations are generated after the specific power, and at most a 14th harmonic oscillation is observed in our experiment. A strong positive temperature dependence is achieved around room temperature. The LN photonic crystal nanocavity turns out to be a good platform for the potential sensitive displacement sensing, the temperature-to-mechanical sensing, or the nonlinear mechanical oscillation generator, which may function as a mechanical frequency comb.

AUTHORS’ CONTRIBUTIONS

H.J. and X.Y. contributed equally to this work.

This work was supported by the National Key R & D Program of China (Nos. 2019YFB2203500 and 2017YFA0303700), the National Natural Science Foundation of China (NSFC) (Nos. 91950107 and 11574208), and the National Science Foundation (NSF) (Nos. ECCS-1810169 and ECCS-1842691). It was performed in part at the Cornell NanoScale Facility, a member of the National Nanotechnology Coordinated Infrastructure (NNCI).

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.
REFERENCES
