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Abstract The formation of the dark spatial solitary wave in cascaded second harmonic generation processes is

numerically studied based on the nonlinear-coupled equations.

It is shown that the solitary wave exists when the

effective three-order nonlinearity induced by cascaded second-order nonlinearity is negative.

PACS numbers: 42.65.Jx
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1 Introduction

It has long been known that the cascaded second-order
(x® : x®) nonlinearity can lead to effective third-order
and this has been widely appreciated since
the series of experiments were reported and were explained

nonlinearity, "]

by the theoretical predictions.2=4 Optical waves propa-
gating in materials with substantial dispersion or diffrac-
tion and significant x3 nonlinearity can be described by
the nonlinear Schrédinger equation (NLSE). Spatial soli-
ton or solitary wave corresponds to the balance between
diffraction and nonlinear effect during the propagation.
Cascading of second-order nonlinearities (x? : x(?) in
quadratic media, which is identified as an approach for
generating large,
also in principle create spatial solitary wave.
quadratic nonlinearity (x(?), a formation of one- and two-
dimensional bright solitary waves was proposed theoreti-

intensity-dependent phase shifts, can
Involving

cally in 1976.0! In recent years much attention has been
paid to the underlying physics of the bright soliton.[6—9]
Further more, the spatial’® and temporall®! optical soli-
tons resulting from multistep cascading have been studied,
which can obviously reduce the input intensity required
for the formation of the solitons. The physics of the dark
soliton due to cascaded second-order nonlinearity at the
stable state was theoretically studied.!*?!

In this paper, we numerically investigate the beam
with dark profile in Gaussian background evolving process
in second-order nonlinearity media when phase-mismatch
is negative. We succeeded in finding the formation of dark
solitary wave due to the cascaded second-order nonlinear-
ity.

2 Spatial Soliton in Cascaded Processes

To simply explain the formation of the spatial soliton,
we can start from Ref. [3].

Positive or negative mismatch during the cascaded x(?)

processes can induce positive or negative effective nonlin-
ear refractive index, respectively (the mismatch is defined
conversely in Ref. [3]). In the bright soliton situation, the
positive effective nonlinear refractive index due to positive
mismatch provides an additional refractive index distribu-
tion, which is proportional to the intensity distribution.
Because the refractive index of the middle part is larger
than that of the sides, the light beam is trapped. While
for the dark soliton, the negative mismatch is required.
Due to the dark soliton intensity distribution, the effect
refractive index of the middle part is also larger than that
of the sides, so the light beam also converges, which may
be balanced by diffraction.

For further consideration, in the slowly varying en-
velope approximation, continuous-wave (cw) light beams
evolution in a medium with a large quadratic nonlinearity
under type-I condition can be described by the wave cou-
pling equations. They used to be reduced in normalized
form[9)

aal « .

5t V 1a1 +d(§)ajas exp(—ifE) =0,
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875 + VLag — 106 - Vias +d(§)ajexp(ipé) =0, (1)
where aq, as are the normalized amplitudes of the funda-
mental and harmonic waves respectively, a = k1/ko, k1,
ko are the wave numbers at the two frequencies. d(§) is
the normalized quadratic nonlinearity and 8 = kin?Ak,
where Ak = 2k; — ko is the wave-vector-mismatch and
n is the characteristic beam transverse width. ¢ is the
& denotes the
Poynting vector walk-off when the propagation direction
is not along the crystal optical axes. We can set § = 0,

propagation distance in the unit of kin?2.

when there is no walk-off between the fundamental and
the harmonic waves (for example: in typical QPM geome-
tries). V1 equals 0/0s in the situation of one dimension,
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here s is the normalized transverse coordinate in unit of
7.

3 Numerical Investigation

In our simulation, a Gaussian beam with a thin
hollow introduced at the center, described as ai(s) =
Agexp(—s?/0?)[1 —sech *(s)]'/? sign (s), is injected at the
entrance. Here o is the width of the background Gaussian
beam. We set ¢ = 201 and then the width of the hol-
low is about 1.707. To investigate the beam evolution, we
integrate Eq. (1) numerically using a split-step approach.
The linear part (V?2) is integrated in the Fourier space
and the nonlinear part is integrated by a fourth Runge—
Kutta algorithm. We divide the evolving process along the
propagation direction into many steps. In every step, the
nonlinear effect is firstly considered exclusively, and then
we only consider diffraction processes. In our simulations,
the input beams do not coincide with the stationary solu-
tion given in Ref. [12].

We investigate the fundamental wave intensity distri-
bution at the output section after about 25 diffraction
lengths (k17?). As same as the temporal dark soliton,?]

the spatial dark soliton due to cascaded quadratic nonlin-
earity is also topological. At the entrance we must intro-
duce a 7 phase step between the two sides of the hollow
as the inset of Fig. 1, otherwise the hollow at the center
will split into two ones during the evolving process.
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Fig. 1 Intensity and phase distribution along the trans-

verse coordinate of the input fundamental wave. There
is m step between the two sides of the hollow.
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Fig. 2 The fundamental wave intensity distribution at the output section with different input fundamental intensities.
The amplitude of the fundamental is 0.1, 1, 3, and 5 respectively.

We set wave vector mismatch as 8 = —15, and nor-
malized amplitude as a; = 0.1,1,3, and 5, respectively.
Figure 2 shows the normalized intensity distribution of
fundamental wave at the output section after the beam

propagates about 25 diffraction lengths. As we can see
in Fig. 2, when the initial intensity of the fundamental
wave is small, the central hollow expands. The effect of
diffraction dominates when the intensity is low enough.
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As the intensity a; increases, the width becomes smaller
and smaller. That means self-focusing effect induced by
cascaded second order optical nonlinearity plays an im-
portant role. When the amplitude reaches to a; = 5, the
width is calculated to be 1.54 n, which is a little smaller
than the input width. It is evident that the solitary-like
wave forms when the input intensity of fundamental wave
is high enough. At the same time, the transverse width of
the Gaussian beam becomes wider because of the diffrac-
tion and defocusing effect of the bright Gaussian back-
ground.
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Fig. 3 The relative hollow width as a function of the
input fundamental wave amplitude. When the amplitude
of the fundamental is big enough, the width of the hollow
will become fixed, or even smaller.

Figure 3 depicts the relative hollow width varying with
the input fundamental amplitude. The relative hollow
width decreases very fast when the amplitude increases
before a; = 2. After a; = 2, the relative width becomes
almost fixed. As seen in the figure, there is small modu-
lation of the relative width. We believe that it is possible
due to the calculation accuracy. In our simulation, the
total intensity of the fundamental wave does not change
much, and only a little energy, about 5 percent, flows into
the harmonic wave.

To experimentally generate the dark solitary wave, we
need to introduce a hollow at the center of a Gaussian
beam, and we should add a relative m phase distortion
at one side of the hollow. For the crystal of periodi-
cally poled lithium niobate, the normalized intensity of
the fundamental wave corresponds to the peak intensity
of 0.1 ~ 1 GW/cm?, which is available by using pulsed
solid lasers. For n = 10 um, twenty diffraction length
is about 25 mm, which is a usual length for periodically
poled lithium niobate crystal.

4 Conclusion

In conclusion, we have investigated the formation of
the dark spatial soliton by cascaded second-order non-
linearity with negative wave vector mismatch. By us-
ing a split-step method, we found that a power thresh-
old (a; = 2) is required for spatial dark soliton formation
under negative phase-mismatch condition.
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