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We report a new algorithm, called the self-adjusting algorithm, to construct an aperiodic optical super-
lattice in which multiple nonlinear optical parametric processes can be realized simultaneously with high
conversion efficiency. The numerical simulations show that a self-adjusting algorithm has obvious
advantages that are due to its own physical process and feedback function. Especially in comparison with
other existing algorithms, a self-adjusting algorithm can eliminate the need to search blindly and is
independent of the initial conditions. © 2007 Optical Society of America

OCIS codes: 220.0220, 190.2620.

1. Introduction

Nonlinear crystal designs that exploit quasi-phase
matching (QPM) can achieve considerable control
over the wavelength conversion efficiency by modi-
fying periods and structures of a nonlinear crystal
[1]. With the development of room-temperature
poling technology, it is possible to achieve domain-
inverting structures in ferroelectric crystals such as
LiNbO3, LiTaO3, and KTiOPO4 [2–4]. The structures
can be periodic or aperiodic [5]. From the theory of
Fourier transformation, crystals with an aperiodic
inverted-domain structure can supply more reciprocal
vectors that can match more optical parametric pro-
cesses simultaneously. As a trade-off, conversion effi-
ciency of each parametric process would be lowered [6].
So, how to find the optimal optical superlattice for
a given multiple optical parametric process is a key
issue. Many methods haven been proposed to solve
the problem. Quasi-periodic optical superlattice (QOS),
such as the fibonacci structure [7], was suggested.
Quasi–phase-matched third-harmonic generation and
multiple second-harmonic generation (SHG) have

been theoretically investigated [8–11]. Then came the
theoretical prediction of the aperiodic optical superlat-
tice (AOS) [12,13], which can supply many more re-
ciprocal vectors for multiple QPM processes than a
periodic optical superlattice and a QOS [14–17]. To
find the optimal AOS structure, a simulated annealing
(SA) algorithm, a genetic algorithm (GA), a genetic
simulated annealing (GSA) algorithm (the combina-
tion of SA and GA) and other optimization algorithms
were employed. However, all these optimization algo-
rithms have the same disadvantages: the searching
process is done blindly, so searching takes a long time,
especially when dealing with a complicated problem.
The searching process depends on initialization condi-
tions and other parameters; the results are easy to
incorporate into a local optimum, thus decreasing
the conversion efficiency of the total multiple QPM
process.

We suggest a new algorithm, which we refer to
as a self-adjusting algorithm. The core concept of
this algorithm is based on the procedure of energy
flowing in QPM nonlinear optical processes, and a
feedback function is introduced to avoid searching
blindly. We proved that much better results can be
found during a shorter calculation time when the
optimized results can be kept from relapsing into
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a local optimum. In addition, the process is inde-
pendent of the initial conditions and other param-
eters.

2. Theory

As is known, to create a high-efficiency SHG, energy
conservation and momentum conservation must be
satisfied simultaneously. The AOS in LiNbO3 crystal
can be designed by use of a self-adjusting algorithm to
satisfy multiple SHG conditions. In our calculations,
the crystal with a total length L is divided into N unit
blocks with congruent length �L, as shown in Fig. 1.
The polarization direction of each block can be up or
down, which is determined by the ensuing flows. To
use the largest nonlinear coefficient d33, let the inter-
faces of each domain be parallel to the Y–Z plane, and
the propagation and the polarization directions of
incident light are along the X and Z axes, respec-
tively. Considering the small signal and the slowly
varying approximation, the pump depletion and the
transmission loss are also not taken into account. The
conversion efficiency � from the fundamental wave to
the SHG wave reads

� �
8�2

�d33�2I�L2

c�0�
2n2�n�

2 �1
L�

0

L

d�z�ei�k����zdz�
[16], where n��n2�� is the index of refraction of the
fundamental (second harmonics) wave, c is the speed
of light in vacuum, � is the wavelength of the funda-
mental light in vacuum, �0 is the dielectric constant in
vacuum, and d(z) represents the orientation of each
block taking binary values of 1 or 	1. We define the
last term as an effective nonlinear optical coeffi-
cient

dreff��k����� ��1
L�

0

L

d�z�ei�k����zdz�,

which can scale the conversion efficiency of SHG by
Fourier transformation. Here, �k���� � k2� 	 2k�,
where k��k2�� is the wave vector of the fundamental
(second harmonic) wave.

Thus, the original question turns into how to
construct an AOS structure so that multiple high-
efficiency QPM SHG processes can be made simulta-
neously, i.e., effective nonlinear coefficient dreff��k���i��
is optimal with identical value. Because the crystal is
equally divided into N blocks, we have
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(1)

The phase mismatch can be described as

�k���� � k2� 	 2k� �
n2� � 2�

c 	
2n� � �

c �
2�

c �n2� 	 n��.

(2)

A new vector Uq��� is defined as Uq��� � ei�k����zq
1

	 ei�k����zq, which can be used to prove that, for a
certain wavelength �, Uq��� is a group of N vectors
with the same length because of the same length of
each block �L, as shown in Fig. 2.

With the above definition, the effective nonlinear
coefficient can be described as

Fig. 1. Schematic of the periodic change of the nonlinear co-
efficient d(z) along z. The arrowheads represent the polarization
directions of positive or negative domains. Fundamental and
second-harmonic wave propagation is along the Z direction.

Fig. 2. Schematic diagram of Uq���, which is a group of vectors
with the same length and a specific direction; for example, U1���
� ej�k�����L and U2��� � ei2�k�����L 	 ej�k�����L.
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dreff��k����� �
1

L�k����� �q�0

N	1

d�zq�Uq�. (3)

As an example, to obtain the largest conversion effi-
ciency for a specific wavelength �, dreff��k����� should
be maximum, i.e., d�zq� should be optimized by the
algorithm so that

� �
q�0

N	1

d�zq�Uq�
is maximum and 1��L�k����� is constant for a given �.

3. Example

As an example, we consider how to build an AOS
based on LiNbO3, which can achieve multiple SHG
with an identical effective nonlinear coefficient, while
SHG for other frequencies is considered as noise. The
four chosen wavelengths of the fundamental wave
are �1 � 1060 nm, �2 � 1082, �3 � 1283, �4 � 1364.
Length L of the crystal is 9.9 mm, which is divided
into 3000 unit blocks with congruent length �L and
�L � 3.3 �m. Based on the above theoretical analy-
sis, the mathematical model has four groups of vec-
tors: 	Uq��1�
, 	Uq��2�
, 	Uq��3�
, and 	Uq��4�
. Uq��� is
defined in Section 2, and q � 3000, so each Uq��� has
3000 vectors with the same length, and their direc-
tions are determined by their �k���� � �L and d�zq�.
The question is how to structure the optimal function
d�zq� to obtain the absolute values of

�
q

Uq��1�, �
q

Uq��2�, �
q

Uq��3�, �
q

Uq��4�

so they reach the same maximum value simulta-
neously. Generally, they are supposed to reach the
same maximum value simultaneously with the spe-
cific angles of 	�1, �2, �3, �4
, as shown in Fig. 3. In
our calculations, we initially set these angles to be
{0, 0, 0, 0}, which are parallel to the positive direc-
tion of the real axis. We will show that the selection
of angles has only a slight influence on the opti-
mized results. In this situation, the effective non-
linear coefficient for each specified wavelength can
be described as

For each block, for example, the length from zq to
zq
1, the contribution to the total dreff��k�����, can be
calculated as

dreff�q� � �
i�1

4 � 1
L�k���i�	cos��k���i�zq
1�

	 cos��k���i�zq�
�. (5)

If dreff�q�  0, the value of d�zq� is set to 1 when
z � �zq, zq
1�; if dreff�q� � 0, the value of d�zq� is set to
	1 when z � �zq, zq
1�. After calculating each block,
the initialization of d�zq� is complete. In this AOS
structure, the value of �i�1

4 dreff��k���i�� is certain to
be maximum. The calculation result is shown in Fig.
4(a). As can be seen, the values of dreff��k���1��,
dreff��k���2��, dreff��k���3��, and dreff��k���4�� are 0.166,
0.187, 0.283, and 0.307, respectively, which are not
equal to each other. The value of �i�1

4 dreff��k���i�� is
0.943.

To average four dreff��k�����, new function R�r1, r2,
r3, r4� is introduced to change the weight of these four
frequencies that supports the feedback function. The
result is that the sum of four dreff��k���i�� can be low-
ered to some degree. When R�r1, r2, r3, r4� is not in-
troduced, it can be regarded as (1, 1, 1, 1). For the first
optimizing step, R�r1, r2, r3, r4� is reset to
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1

L�k���1� �
q�0

N	1

d�zq�	cos��k���1�zq
1� 	 cos��k���1�zq�
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1
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1� 	 cos��k���2�zq�
�,
dreff��k���3�� �

1
L�k���3� �

q�0

N	1

d�zq�	cos��k���3�zq
1� 	 cos��k���3�zq�
�,
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1
L�k���4� �

q�0

N	1

d�zq�	cos��k���4�zq
1� 	 cos��k���4�zq�
�. (4)

Fig. 3. Schematic diagram of the optimal result based on one
specific function d�zq�. �q Uq��1�, �q Uq��2�, �q Uq��3�, and �q Uq��4�
are supposed to reach the same maximum value simultaneously
with specific angles 	�1, �2, �3, �4
.
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0.166,

1
0.187,

1
0.283,

1
0.307�.

This time the algorithm seeks the maximum of
�i�1

4 ridreff��k���i�� instead of �i�1
4 dreff��k���i��. After

this step, a new AOS structure is obtained, and the
values of the four peaks are 0.258, 0.232, 0.196, 0.206,
as shown in Fig. 4(b). The second optimizing step is to
adjust the above R�r1, r2, r3, r4� to be

 r1

0.258,
r2

0.232,
r3

0.196,
r4

0.206�
and then search for a new AOS structure that satis-
fies the maximum of �i�1

4 ridreff��k���i��. After seven
optimizing steps, values of dreff��k���1��, dreff��k���2��,
dreff��k���3��, and dreff��k���4�� are all 0.229, as shown
in Fig. 4(c). �i�1

4 dreff��k���i�� is 0.916, which is quite
close to the ultimate value of 0.943. So the depletion
generated by R�r1, r2, r3, r4� is small. The value of
R�r1, r2, r3, r4� is (39889, 36562, 25621, 24073). The
computation time is within 1 s, which is much shorter
than the time computed by other algorithms. The

optimized results after each step are shown in Fig.
4(d). In addition, we can also achieve the peaks by
any arbitrary proportion we want by setting different
R�r1, r2, r3, r4�.

Figure 5 describes the evolvement of the effective
nonlinear coefficient of four fundamental waves as
they propagate through a series of domain blocks in
the AOS. Figure 5 shows that each curve moves to the
same end point in different ways. This clearly shows
that these wavelengths can all be globally phase
matched by the interference effect of all the con-
structed domains with the same effective nonlinear
coefficient, but they undergo different interference
processes. For convenience, we set the angles 	�1,
�2, �3, �4
 to be (0, 0, 0, 0). When we change the an-
gles 	�1, �2, �3, �4
 arbitrarily, the peaks change only
slightly.

4. Analysis

Compared with other algorithms, such as SA, GA,
and GSA, the combination of SA and GA, the advan-
tages of the self-adjusting algorithm are obvious. The
SA method specializes in yielding the best local re-
sults but is not good at searching the overall space.
The GA method can easily be used to guide the search

Fig. 4. (a) Result without introducing R�r1, r2, r3, r4�, (b) result after one optimizing step, (c) the result after seven optimizing step. (d) The
four peak values at the designed wavelength after each optimization step. After three steps, the four peak values are close to each other.
After seven steps, four peaks with identical effective nonlinear coefficients of 0.229 at the designed wavelengths are determined. Effective
nonlinear coefficient of QPM SHG as a function of fundamental wavelength in the AOS structure optimized by the self-adjusting algorithm
with N � 3000 and �L � 3.3 �m. The designed wavelengths are 1060, 1082, 1283, and 1364 nm.
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process to the correct direction, but the GA cannot get
the best local results with high efficiency. The com-
putational amount of both the GA and the SA is
usually huge and requires quite a long time to solve
the problem. The GSA algorithm takes advantage of
both the SA and the GA and has proved to be an
excellent algorithm. The optimization result of a non-
linear optical superlattice in LiNbO3 from the GSA
algorithm has been reported [12] with the same
length of crystal and the same number of blocks when
dealing with the same multiple SHG problem. The
value of each dreff��k���i�� is approximately 0.14,
much lower than the result of the self-adjusting
algorithm, whereas the noise is much higher. The
calculation time takes approximately 8 h, the calcu-
lation time for the self-adjusting algorithm is less
than 1 s.

The main idea of the self-adjusting algorithm is
similar to the A� heuristic algorithm and also takes
the feedback function into consideration. Compared
with other existing algorithms, the self-adjusting al-
gorithm has significant advantages.

First, the self-adjusting algorithm is based on a
specific nonlinear optical process, such as multiple
QPM SHG or other frequency conversion processes
that take into account the real situation and physical
principle when optimizing the structure; other algo-
rithms do not consider the actual physical process.
The self-adjusting algorithm can also be used to solve
other optical parametric processes, such as optical
parametric oscillation, different frequency mixing,
only by changing some specific parameters.

Second, the self-adjusting algorithm uses a feed-
back function to avoid searching blindly, so the cal-
culation time is much shorter. Other algorithms are
based on macroscopic computation, the searching
processes for optimal results are done blindly and
require huge amounts of calculation as well as repet-

itive huge amounts of tentative calculations. So, the
self-adjusting algorithm has a significant advantage
when dealing with more complicated QPM optimiza-
tion questions.

Third, the self-adjusting algorithm is independent of
initial conditions. The results gained by other algo-
rithms depend on their initial conditions, which could
lead to different solutions. To confirm a most suit-
able initial condition is usually difficult. For the self-
adjusting algorithm, the definition of R�r1, r2, r3, r4�
is an analog to the initial condition. Usually,
R�r1, r2, r3, r4� is defined as (1, 1, 1, 1). Actually, the
arbitrary initial value of R�r1, r2, r3, r4� could approach
the same optimized results.

Last but not least, when using other algorithms,
such as SA, GA, and GSA, some specialized param-
eters need to be confirmed. For example, population
size, mating rule, and fitness function for the GA;
initial temperature and annealing speed for the SA.
If one of these parameters is not suitable, the
searching results could be unsatisfactory. Besides,
confirmation of parameters is a difficult mission.
The self-adjusting algorithm has nothing to do with
these parameters, which is a great convenience for
the designer.

5. Conclusion

In summary, we have proposed a new algorithm to
search for the ideal construction of an AOS that cor-
responds to a frequency conversion problem. The cal-
culated results show that it is more flexible and
effective than other existing algorithms. By using this
algorithm, we can construct the AOS with a higher
conversion efficiency. It can also be used to solve other
optimization problems with different optical paramet-
ric processes.
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