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1. Introduction

In the early days of nonlinear optics, two kinds of
optical solitons had been predicted, spatial and
temporal, where the diffraction and dispersion can
be balanced by the nonlinear effect, respectively
[1,2]. One kind of spatial soliton, called an optical
Kerr soliton, exists in a Kerr medium where diffrac-
tion is confined to one transverse dimension and has
been observed experimentally in CS2, glass, semi-
conductors, and polymer waveguides [3–6]. In 1988,
an idea that light could trap itself in nonlinear opti-
cal waveguide arrays or lattices was suggested [7].
Similar to spatial solitons in a continuous medium,
this self-localization takes place when the on-site
nonlinearity exactly balances the discrete diffraction
arising from linear coupling effects among the adja-
cent waveguides. After 10 years’ theoretical research
and technology progress in fabrication of precision-
made defect-free waveguide arrays, Eisenberg et al.
reported the experimental observation of discrete
spatial solitons in AlGaAs waveguide arrays for
the first time in 1998 [8]. Since then, a lot of break-
throughs were made, such as the first observation of

anomalous diffraction and diffraction management
[9,10], Floquet—Bloch solitons [11], discrete solitons
in nonlinear quadratic arrays [12], and photorefrac-
tive arrays [13,14]. All of these phenomena are based
on periodic structures, and these solitons were
known as lattice solitons [15]. In fact, solitonlike be-
havior in periodic structures has been reported in
some nature systems, such as molecules [16,17],
charge density waves [18], spin waves [19], arrays
of Josephson junctions [20,21], and even Bose–
Einstein condensates [22,23]. Optical solitons have
attracted more and more attention for their potential
application in optical networks, and relevant re-
search results were reviewed quite recently in [24].
Light propagating in periodic structures exhibits
new characteristics that cannot be found from its
counterpart in homogeneous materials. In periodic
structures, not only are the soliton phenomena
attractive, but also the coupling effects between
adjacent waveguides (linear diffraction) work. Thus,
periodic structures can provide a unique way for
controlling light propagation. Research showed that
soliton switching and filtering can be completed by
use of such structures [25,26]. As we know, it is very
interesting and useful to control or switch discrete
diffraction and spatial solitons in such a discrete
system. To the best of our knowledge, reports in
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the literature are rare because a discrete structure
such as a waveguide array is not easy to modulate
while it is being fabricated.
In this paper, we propose a new method for

controlling discrete solitons in waveguide arrays
by electrical field. By applying an external electrical
field on periodically poled lithium niobate (PPLN), a
LiNiO3 waveguide array can be formed. Based on
this kind of waveguide array, we study how to control
discrete diffraction and spatial solitons in PPLN
waveguide arrays by electrical field. Because this
method provides an easy way to control solitons, it
may be useful for further research on optical switch-
ing and filtering.

2. Theoretical Model

Materials that have been used to fabricate wave-
guide arrays usually have a large nonlinear
coefficient, like AlGaAs for Kerr solitons [8] and
copper-ion-doped LiNiO3 for gap solitons [14]. In
our method, we choose periodically poled lithium nio-
bate (PPLN) as a waveguide array since z-cut LiNiO3
has a large electro-optic coefficient as well as its large
nonlinear coefficient. When an external electrical
field is applied along the z axis of PPLN crystal,
the extraordinary refractive indices of the positive
and negative domains will change oppositely due
to the linear electro-optic effect (as shown in Fig. 1).
In fact, such a linear electro-optic effect affects the
refractive indices along the x and y axes through
γ13 only when the light is ordinary polarized. In
our simulation, extraordinary polarized light propa-
gating along the y axis is assumed, so only the refrac-
tive index along the z axis should be considered. As
shown in Fig. 1, the PPLNwaveguide array is formed
by using the largest electro-optic coefficient γ33.
Evidence for inducing an alternative refractive index
change by applying an electrical field along the z axis
has been reported in realizing Bragg modulators
[27], a cylindrical lens, a switching and deflection de-
vice [28], and Fresnel zone plates [29]. Consequently,

a waveguide array forms with identical periodically
distributed rectangular waveguides. Compared with
other waveguide arrays, such a waveguide array
shows its advantages in easy controllability and
flexibility.

As for the study of diffraction and discrete solitons
in waveguide arrays, the coupling coefficient of the
waveguides is essential, and in our simulation, it
is determined by the electrical field through the
refractive indices of the positive and negative
domain, np and ng, respectively, which are deter-
mined as follows:

np ¼ ne −
1
2n

3
e · r33 · E;

ng ¼ ne þ 1
2n

3
e · r33 · E;

ð1Þ

where ne is the refractive index of LiNbO3 for TE in-
put light, γ33 is its electro-optical coefficient, and E is
the applied electrical field. PPLN has a fixed period
of domain distribution, so when the electrical field is
applied, the identical waveguides are positioned with
equal separation between each other so that all the
coupling coefficients between them are equal.

When light is launched into one waveguide, it will
couple to the neighboring waveguides along its
propagating direction and broaden its spatial distri-
bution, which is analogous to diffraction in continu-
ous media. Because all the waveguides are identical,
energy can be exchanged between two neighboring
waveguides through the overlap of their mode.
According to the coupling mode equations [30,31],
the coupling coefficient of the waveguide array is

C ¼ 2κ2γ2e−γd2

βð2þ γd1Þðκ2 þ γ2Þ ;
�
κ ¼ ðn2

gk20 − β2Þ1=2
γ ¼ ðβ2 − n2

pk20Þ1=2
;

ð2Þ

where d1 and d2 are the width of the negative and
positive domain, respectively, and k0 is the wave vec-
tor of light in vacuum. β is the propagation constant
in the waveguide and is determined by the following
eigenfunction [31]:

tan κd1 ¼ 2γ
κ
�
1 −

γ2
κ2
� ; ð3Þ

where κ and γ are described in Eq. (2).
When light power increases, the Kerr effect occurs

to reduce the broadening of linear coupling. If the
power is high enough, light can be focused back to
the central waveguide to form a discrete soliton.
These two processes can be described by the well-
known discrete nonlinear Schrödinger equation,
which gives the evolution of En, the light wave in
the nth waveguide:

i
dEn

dz
þ βEn þ CðEn−1 þ Enþ1Þ þ rjEnj2En ¼ 0; ð4Þ

Fig. 1. (Color online) Schematic of PPLN with an electrical field
applied along the z axis. The injected light beam is extraordinary
polarized.
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where β is the linear propagation constant and C is
the coupling coefficient. The last term of the equation
describes the nonlinear effect, and the coefficient is

r ¼ ω0n2

cAeff
; ð5Þ

where ω0 is the optical angular frequency of input
light, n2 is the nonlinear coefficient, Aeff is the com-
mon effective area of the waveguide modes, and r is
calculated to be 0:413 ðW mÞ−1 in our simulations.
Using all the parameters calculated above, we can

exactly simulate the light propagation under differ-
ent external electrical fields in our PPLN waveguide
array. To solve the discrete nonlinear Schrödinger
equation, we use the split-step fast Fourier trans-
form method [32]. The period of the PPLN is set to
be 6:5 μm with duty ratio 1∶1, the length of the
waveguide is 10mm, and the light source is at the
wavelength of 800nm with a pulse width of 100 fs.
We also consider the influence of dispersion, and
the dispersion coefficient β2 is about 1:575 ×
10−3 ps2=m for LiNbO3.

3. Simulation Results and Discussion

The rule of the coupling coefficient of the PPLN
waveguide array changing with electrical field is
important for controlling the light propagation. As
shown in Fig. 2, the coupling coefficient increases
with electrical field, increasing until reaching a peak,
and then starts to decrease. It can be explained that
at the very beginning when the electrical field is
applied, the refractive index difference between
the positive and negative domains increases, and a
waveguide array starts to form, making a positive
contribution to the coupling coefficient. In the mean-
time, the guide mode confinement of the waveguide
becomes stronger and stronger, preventing light from
coupling to adjacent waveguides. Thus, the coupling

coefficient climbs to a peak and then starts to roll
down as the applied electrical field increases.

According to our calculation, the largest coupling
coefficient is about 860m−1 at the electrical field of
2:8kV=mm. If we couple a light beam with low power
into the waveguide, when the applied electrical field
is tuned continuously from 0 to 2:8kV=mm, we can
observe a linear coupling process, and that the beam
will be coupled to more waveguides at a higher
electrical field. At this point, if we still increase
the applied electrical field, an inverse process will
be observed that can be described as linear focusing.
As shown in Fig. 3, a light beam of 500W intensity is
injected into the PPLN waveguide array, which has a
total of 50 identical waveguides. Figure 3 shows the
beam coupling results when the applied electrical
fields are 0.6, 1.6, 2.8, and 5:0kV=mm. Figures 3
(a)–3(c) show the linear coupling process; Figs. 3(c)
and 3(d) show the so-called linear focusing process.
From Fig. 3, we see that the linear coupling process
changes faster than the linear focusing process. This

Fig. 2. Diagram of coupling coefficient as a function of applied
electrical field.

Fig. 3. Beam coupling result at the applied electrical field of (a) 0:6kV=mm, (b) 1:6kV=mm, (c) 2:8kV=mm, and (d) 5:0kV=mm.
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is because the slope of the climbing region of the
curve in Fig. 2 is much larger than that of the declin-
ing region, i.e., the coupling coefficient is more sen-
sitive to the applied electrical field in the climbing
region.
Low-power light beams experience a linear

coupling process in our PPLN waveguide array when
an electrical field is applied, and such a coupling pro-
cess can be controlled by changing the electrical field.
As LiNbO3 crystal has characteristics of good
nonlinearity, we want this controlling method to be
available in the situation of a high-power light beam.
If we fix the electrical field and increase the beam
power, the nonlinear focusing process should occur
and we should expect a discrete spatial soliton in
the waveguide array. Figure 4 shows the light beam
changing in the PPLNwaveguide array with the elec-
trical field fixed at 0:8kV=mm, and the beampower is
3:0kW, 4:0kW, and 5:0kW in Figs. 4(a)–4(c), respec-
tively. Such beampowers are higher than that used to
form solitons inAlGaAswaveguide arrays [8] because
the coefficient γ in ourPPLNwaveguide array ismuch
less than those in the AlGaAs waveguide arrays.
Similarly, in our PPLN waveguide array, we can fix
the light beam power while changing the electrical
field to form a discrete spatial soliton as well. This
process is shown in Fig. 5 with fixed light beam power
at 5:0kW.
In Fig. 5(a), when the electrical field is 1:2kV=mm,

the light beam is linearly coupled to other wave-
guides and no soliton forms. Then the electrical field
is decreased to 0:8kV=mm, and a discrete spatial
soliton forms as shown in Fig. 5(b). When we keep
decreasing the electrical field to 0:6V=mm, we find
that more light beams are focused to the central
waveguide and the intensity of the soliton is rather
high as in Fig. 5(c). This process also shows an avail-

able way to form a discrete spatial soliton in wave-
guide arrays.

Let us go over the principle of Kerr soliton forma-
tion and then consider the processes in Figs. 4 and 5.
A Kerr solitons appears when the on-site nonlinear-
ity exactly balances the discrete diffraction arising
from linear coupling effects among the adjacent
waveguides. During the process shown in Fig. 4,
the dominant effect for the soliton’s formation is
the nonlinear effect. As the light beam power in-
creases, the nonlinear effect gets stronger and stron-
ger, focusing more energy to the central waveguide.
During this process, the effect of linear coupling does
not change, and this effect determines the spatial
distribution of light beams on the output facet. So
in the three parts of Fig. 4, the spatial distributions
on the output facet are nearly the same, i.e., the out-
put light beams cover nearly the same waveguides.
While during the process of Fig. 5, the dominant ef-
fect for the soliton’s formation is the linear effect, this
linear effect is not the linear coupling effect. In our
simulation, when the electrical field decreases, the
coupling coefficient becomes smaller. And this effect
weakens the discrete diffraction linearly, so we call it
linear focusing effect. So as the electrical field
decreases, the linear focusing effect increases, and
the output light beams covers less waveguides on
the output facet. These two different processes are
shown in Fig. 6.

Figure 6(a) shows the process of nonlinear focusing
as light beam power increases. When light beam
power increases, a discrete spatial soliton forms,
but the energy distributions of the different powers
are nearly the same. Figure 6(b) shows our electri-
cal-field-controlled linear focusing process. A soliton
forms again but the energy is distributed in fewer
waveguides on the output facet. In our method, three

Fig. 4. Discrete spatial soliton forms in PPLN waveguide array with fixed electrical field at 800V=mm. The light beam powers are
(a) 3000W, (b) 4000W, and (c) 5000W.

Fig. 5. Discrete spatial soliton forms in PPLN waveguide array with fixed light beam power at 5000W. The electrical fields are
(a) 1:2kV=mm, (b) 0:8kV=mm, and (c) 0:6kV=mm.
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determinant factors, the normal waveguide coupling
effect, the power-dependent nonlinear focusing effect,
and the electrical-field-controlled linear focusing ef-
fect, decide the discrete diffraction and spatial soliton
together.

4. Conclusion

In this paper, we propose a newmethod to control dis-
crete diffraction and spatial solitons in PPLN wave-
guide arrays by electrical field. Besides the linear
coupling effect and the nonlinear focusing effect, we
employ a linear focusing effect by changing the elec-
trical field applied on the PPLN waveguide arrays.
This method allows us to precisely control the light
beam propagation in the PPLN waveguide arrays
to formdiscrete diffraction and spatial solitons,which
has a potential application in optical signal proces-
sing such as switching and routing by electrical field.
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