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Abstract: Theoretical investigation on the group velocity control of 
ultrafast pulses through quadratic cascading nonlinear interaction is 
presented. The dependences of the fractional time delay as well as the 
quality factor of the delayed femtosecond pulse on the peak intensity, group 
velocity mismatch, wave-vector mismatch and the pulse duration are 
examined. The results may help to understand to what extent some optical 
operation parameters could have played a role in controlling the ultrashort 
pulses. We also predict the maximum achievable pulse delay or 
advancement efficiency without large distortions. A compact solid medium 
integrating multiple functions including slowing light, wavelength 
conversion or broadcasting on a single chip, may bring significant 
practicality and high integration applications at optical communication 
band. 
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1. Introduction 

Many interests have been focused on manipulating the group velocity of light pulses [1–4]. Its 
main goals include the understanding of physical laws for light pulse propagation as well as 
many promising applications such as controllable optical delay lines, all-optical memories, 
and data resynchronization devices for all optical communication [5]. Recent research has 
mainly focused on minimizing pulse distortion, producing a controllable pulse velocity and 
delaying a pulse by more than the width of the pulse. With the rapid growth of the 
transmitting data amount, techniques for controllably delaying ultrafast pulses are urgently 
demanded in future high speed and large capacity optical networks [5]. Slow light techniques 
that can offer large fractional delay and distortion-free propagation are especially attractive. 

In Ref [6], Gauthier proposed pulse distortion can be avoided by operating in the nonlinear 
optical regime. By employing this method [7], Mok et al, obtained a slow-light delay time that 
is about two and a half pulse widths by using gap solitons. Noticing that most of the optical 
packets utilized in next-generation high speed information networks will become shorter and 
shorter in time domain in order to meet the practical requirement of a high data rate, high 
throughput performance in optical-telecommunication systems. Most pulse durations reported 
in previous study are of the order of millisecond to picosecond region. Group velocity control 
of femtosecond pulses was also demonstrated through χ

(2)
 cascading interactions in quasi-

phase-match (QPM) gratings [8]. 
In this paper, the group velocity control performance based on χ

(2)
 cascading interactions 

was investigated in detail. Variation of the fractional delay as well as the delayed pulse quality 
in QPM gratings with different optical parameters was analyzed. An evaluation factor was 
also proposed to assess the performance of the delay controlling scheme at the end of our 
analysis. By this mean, the optimum conditions for best delay performance were found under 
different situations. In addition, it should be mentioned that in our previous research [9,10], all 
optical wavelength broadcasting and wavelength conversion can also be realized in such QPM 
gratings. By properly designing the poling period, we cannot only get different harmonic 
waves [11,12], convert the signal to desired wavelength but also slow down the signal pulse in 
C-band. Then we gain the ability to harness the photons in just one chip. This may pave the 
way for the realization of the photonic integrated chip which can create the optical equivalent 
of the silicon electronic chip for light-based signal-processing tasks in future all-optical 
networks. 

2. Theoretical model 

In our work, we consider that a femtosecond pulse with 50 fs duration is incident onto a z-cut 
5 mol% MgO: PPLN crystal along y direction (see inset of Fig. 1). The signal pulse which is 
called the FF pulse (central wavelength at ωFF) generates the second harmonic (SH) wave 
first, then the SH wave will be converted back to the FF due to wave-vector mismatching. 
When the energy is converted to the SH field, it propagates with the group velocity of the SH 
field. As a result, the signal experiences deceleration or acceleration since it is dragged by the 
slower or faster SH pulse depending on the sign of the slight group-velocity mismatch (GVM) 
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and energy exchange between the signal and the SH. We choose 5mol% MgO:PPLN crystal to 
be the representative medium due to its unique material dispersion [9,10,13]: in type-I 
geometry (e:o + o), the group velocity matching for second harmonic generation (SHG) 
occurs at the fundamental wavelength of 1560 nm combined with broadband QPM [10]. 

 

Fig. 1. The waveform of the input (black dot line) and the output (red solid line for delay and 
blue dash line for advancement) pulse. Inset: schematic diagram of the group velocity control 
scheme through quadratic cascading interaction. 

In order to get an estimated image for our simulation, we here first perform an 
approximate analysis in the absence of dispersion. We first consider a type I QPM geometry 
in this quadratic cascading interaction and the nonlinear coefficient d31 is used. The coupled 
wave equations governing the propagation of the FF and SH waves under the slowly varying 
envelope approximation can be generalized as [14]: 
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where ρi(z) =  ± ωid31/cni (the positive and negative sign depend on the distribution of second-
order nonlinearity along the QPM grating, and i = 1,2) and σi = 3ωiχ

(3)
/8cni. The χ

(3)
 terms are 

the cubic nonlinear terms include self phase modulation (SPM) and cross phase modulation 
(XPM). Since the input intensity is quite high, they cannot be neglected in our simulation. 
And they may counteract the cascading quadratic nonlinearity and reduce the net nonlinearity 
which will contribute to the construction of slow light soliton. Ei(z,t) denotes the amplitude of 
the electric field, ni denotes the refractive index and ωi denotes the angular frequency. The 
subscripts 1 and 2 correspond to FF and SH pulses, respectively. Time t is measured in a time 
frame moving with the linear group velocity of the FF pulse. ki

‟
 is the inverse group velocity, 

and ki
”
 = d

2
ki/dω

2
 is the group velocity dispersion (GVD); δ = k

’
SHk

’
FF is the GVM, Δk0 = k2-

2k1 is derived from Sellmeier‟s equation for MgO:LN [15].In our simulation, only the FF light 
is incident onto the quadratic medium, in the limit of large wave-vector mismatch, an equation 
of motion for the FF field can be derived from Eq. (1) as following [16,17]: 
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where Δk = k2-2k1-2π/Λ, and Λ is the poling period. In the case of negligible GVD, The 

general solution E1(z,t) = I1(z,t)
1/2

exp(i(z,t)) of Eq. (2) can be written as [18] 

 
1 1( ),I f t z I    (3) 

where I1(z,t) = |E1(z,t)|
2
 is the square of the amplitude and (z,t) is the phase 

 1 1( ).z I g t z I       (4) 
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In the Eq. (3) and (4), f(t) = I(t,0) is the initial pulse shape, and g(t) is the initial pulse 

distribution, γ = 2δρ1ρ2/Δk
2
, and κ = ρ1ρ2/Δk. 

As shown in Eq. (3), the dragging by the slower SH wave in case of γ<0, is proportional to 
the parameter δ because of increased dragging with larger GVM; And it is also inversely 
proportional to Δk

2
, due to the lower amount of SH wave generated from the FF wave and less 

efficient dragging for increasing wave-vector mismatch. We also noted that the delay of FF 
pulse increases by increasing the FF pulse intensity, which has detailed discussion in Ref [16]. 
by the authors. 

3. Results and discussion 

The input FF is a transform-limited 50 fs pulse (peak intensity: 50 GW/cm
2
) at the wavelength 

of 1530 nm and the temperature is set to be 20°C. Numerical simulation is carried out to solve 
Eq. (1) with a symmetric split-step beam-propagation method (BPM) and the waveforms of 
the input and output pulses are shown in Fig. 1. Firstly, we investigate the fractional time 
delay of the output FF pulse as a function of the FF input peak intensity (as is seen in Fig. 2). 
Besides, we also evaluate the quality of the output pulses. The pulse shape of quadratic soliton 
is very close to the hyperbolic-secant or Gaussian functions. In simple terms, a sech

2
 (t) 

function is used to fit the central part of the FF and SH pulses at each position. In this paper, 
the term “Quality Factor” is defined as the fractional amount of energy carried by the central 
spike of the FF and SH pulses, normalized by the launched energy. It should be noted that, in 
most of our simulations, when the quality factor drops below 0.75, the pulse will degrade and 
split into a multi-peaked structure, being no longer tolerable for maintaining pulse integrity. 
From the inset in Fig. 2, we can see the pulse broadening with no time delay at low intensity 
case (below 0.1 GW/cm

2
). Group delay control by varying input FF peak intensity can be 

realized at higher intensity due to the strong nonlinear interaction and dragging between the 
FF and SH pulses. The rate of time delay increment decreases with the increasing input peak 
intensity. This is consistent with the theoretical prediction because the quadratic cascading 
nonlinearity saturates with the increasing input intensity. But we can also find that with the 
input pulse peak intensity increased, the quality factor decreases, which is due to the strong 
interaction between the FF and SH pulses that results in a broad pedestal accompanied by the 
main spike [19]. 

 

Fig. 2. The fractional time delay (blue diamond line) and the quality factor (red circle line) 
dependences of input pulse peak intensity. The wavelength of the input FF is 1530 nm at the 
wave-vector mismatch Δkl = 30π. The inset shows the input (blue line) and output (red line) 
pulse at low input intensity (0.1 GW/cm2). 

GVM represents the group velocity difference between the FF and the SH pulses. In the 
presence of GVM, the FF and the SH waves will mutually trap and drag each other and 
propagate with a velocity between the non-interacting FF and SH group velocities. We can 
find in Fig. 3(a) that the fractional time delay increases nearly linearly with the GVM when it 
is not too large. It will come to a peak value and then shift to decrease with greater GVM, 
because the group velocity difference between the FF and SH pulses becomes larger, which 
counteract the overlap of these two pulses and will weaken the dragging effect. The waveform 
of the delayed output pulse distorts due to the large walk-off. The quality factor first maintains 
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around a relatively high value and drops to decrease, which is consistent with the tendency of 
the variation of the fractional time delay. We also found out that, when other circumstances 
stay the same, smaller wave-vector mismatch (Δk) is always accompanied by lower quality 
factor and larger fractional time delay. 

 

Fig. 3. (a) The fractional time delay (diamond) and the quality factor (circle) as a function of 
the group velocity mismatch. The blue line shows the case of wave-vector mismatch Δkl = 10π 
while the red line represents Δkl = 30π. (b) The fractional time delay (diamond) and the quality 
factor (circle) as a function of the wave-vector mismatch. The wavelength of the input FF is 

1530 nm (GVM = 15.5 fs/m) for blue line and 1590 nm (GVM = 14.3 fs/m) for red line. 

From above, we can find that with the larger wave-vector mismatch, the group velocity of 
the FF pulse changes less than that with the smaller mismatch. Then we investigate how the 
wave-vector mismatch influences over the time delay. From Fig. 3(b) we can find that under 
the same group velocity mismatch, the time delay slowly decreases towards zero with the 
wave-vector mismatch increased. The time delay is reduced due to the lower converted 
amount of the SH waves which contributes to the dragging. The red empty diamond line 
shows the pulse acceleration case. The smaller wave-vector mismatching can lead to larger 
fractional time delay but with a lower quality factor. The reason is similar with the 
explanation given in Fig. 2. 

Another factor which may give an important impact on the delaying performance is the 
input duration of the injected pulses. As can be seen in Fig. 4, the fractional time delay come 
to a peak value around 30 fs where the quality factor is also close to maximum. For it‟s the 
minimum pulse duration that can tolerate the given GVM without the complete walk-off 
between the FF and SH wave. So in practical case, we can carefully choose the input pulse 
duration to get a high fractional delay with good pulse quality simultaneously. 

 

Fig. 4. The fractional time delay (blue diamond line) and the quality factor (red circle line) as a 
function of the input pulse duration. The wavelength and the input peak intensity is 50GW/cm2. 

Besides these independent analyses above, there‟s always a trade-off between the 
fractional time delay and the quality factor under different situations. It is impossible to obtain 
infinite time delay without the degradation of the quality factor. So here considering a 
comprehensive and practical evaluation on the performance of controlling fs laser pulses, we 
defined an evaluation factor named „delay-quality production‟ (DQP). The definition equation 
can be expressed as follows, where τ denotes the fractional time delay and Q is the quality 
factor. 

#139064 - $15.00 USD Received 2 Dec 2010; revised 20 Jan 2011; accepted 22 Jan 2011; published 4 Mar 2011
(C) 2011 OSA 14 March 2011 / Vol. 19, No. 6 / OPTICS EXPRESS   5217



 .DQP Q    (5) 

One can evaluate the delaying performance by DQP. In the practical point of view, since the 
poling period of the MgO:PPLN crystal is fixed after it is fabricated, we can‟t modulate the 
group velocity mismatch and the wave-vector mismatch independently. It‟s more efficient to 
tune the peak intensity and the duration of the input pulse to obtain the maximum DQP. 
Figure 5 gives an example to optimize the delaying performance by selecting the specific peak 
intensity and duration of the input pulse. We can see that the optimum input pulse duration 
can always be found with different input peak intensity. This can help us to find the optimum 
conditions for this group velocity control scheme by looking for the largest achievable DQP. 

 

Fig. 5. DQP as the function of the input pulse duration and the input pulse peak intensity. 

Based on the study on the fundamental factors which contribute to the group velocity 
control approaches, one can expand the study by introducing some additional modulation 
means such as electrical [20], thermal (both to modify the optical properties of the medium) or 
optical (to modify either the optical properties of the medium or the input light) modulation to 
achieve expected result. In addition, one can get higher quality factor with smaller fractional 
delay than that can be obtained in periodic grating with the same achievable maximum DQP 
by employing continuously linearly chirped QPM grating instead. As a matter of fact, linearly 
and non-linearly chirped configurations have been explored theoretically and experimentally 
in previous researches, with results showing high quality factor with high fractional delay 
[21,22]. Chirped gratings may not only be helpful in pulse quality orientated delaying 
schemes but also introduce improvements and new interesting features for photonic integrated 
chip. 

4. Conclusion 

In summary, we presented a full theoretical analysis to evaluate origins of group velocity 
control of ultrafast pulses through quadratic nonlinear cascading process. Our analyses show 
that the impact of the fractional time delay depends on the input intensity, group velocity 
mismatch, wave-vector mismatch and the input pulse duration. In particular we have found 
that, for a given QPM grating, one can choose the proper peak intensity and pulse duration of 
the input pulse to obtain the optimum fractional time delay with good pulse quality. 
According to our simulation results, large time delay with little distortion can be obtained to 
realize ultrafast optical signal process. Since this slowing down scheme is accompanied with 
wavelength conversion process, this approach can simultaneously realize these two functions 
on a single chip which is eagerly demanded for all optical communication systems. 
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