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The evolution of polarization and spin angular momentum (SAM) in periodically rocking superlattices
(PRS) is investigated. Unlike in the birefringent crystal, they exhibit unusual properties. The evolution of
polarization showsmany remarkable trajectories and the SAMoscillates inside the PRS. The results may
find applications in polarization-state or optical SAM control. © 2011 Optical Society of America
OCIS codes: 190.4400, 260.5430, 160.2100.

1. Introduction

The polarization state of the light that reflects the
vector nature of the electromagnetic field is particu-
larly striking when nonreciprocity comes into play
and can have some far-reaching conceptual repercus-
sions in applications [1]. As an old and fundamental
issue, the management of polarization has triggered
a growing interest due to the recent discovery of
the optical spin Herr effect [2], which consists of the
generation of a spin current, extremely promising for
optical quantum-information processing [3]. Mean-
while, the spin angular momentum (SAM), which re-
flects the nature of the polarization state of a light,
was demonstrated by Beth [4], and recent attempts
have focused on the design of a handy SAM generator
[5–7], which can play a significant role in the accu-
rate manipulation in microscopic scale, such as par-
ticles and molecular in particular [8–10]. In this
paper, we systematically studied the evolution of po-
larization and SAM of the light in a structure known
as a periodically rocking superlattice (PRS). The re-
sults show that the evolution exhibits unusual prop-
erties. Diverse trajectories of the evolution of the
polarization state with remarkable shapes were dis-

covered. The evolution of SAM, which oscillates in
the PRS, is also found to be distinctive. A critical
wavelength is discovered in particular that separates
the SAM of a light into two groups, with one contain-
ing more left-handed circularly polarized (LHCP)
photons and the other more right-handed circularly
polarized (RHCP) photons.

The material we discussed here is periodically
poled lithium niobate (PPLN), a kind of nonlinear
photonic crystal that has been widely investigated in
many regions [11–14]. Previous studies have shown
that PPLN can behave as a Solc-type rocking filter
[15–17] when undergoing an external electric field,
in which case the optical axis of the positive domain
and the negative domain rotate a reversed small an-
gle with respect to the optical plane of the input light,
as shown in Fig. 1, and the modified PPLN is iden-
tified as the PRS. Here, we found that such PRS
means more than a Solc-type rocking filter, as the
rocking structure not only manipulates the intensity
of a light but also performs a substantial impact on
the polarization state of the light. Attractive devices
on adaptive polarization control were made available
with our recent attempts to manipulate the polariza-
tion state of the light coming out of a PRS via
external electric field [18]. Here, we further our in-
vestigation on polarization evolution inside the
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PRS, and subsequently get an insight into the SAM
of a light, which has not been fully understood.

2. Theoretical Analysis

A. Evolution of Polarization State

In a birefringent crystal, a polarized light decom-
poses into the ordinary wave (OW) and the extraor-
dinary wave (EW), and the two waves, in general,
do not exchange energy with each other. However,
in PRS the rocking angle of the optical axis
behaves as a periodical small perturbation, in
which case the coupling of energy between OW
and EW will be yielded. Considering E1;2 ¼ A1;2ðzÞ×
exp½iðk1;2z − ωtÞ�, the Jones vectors, which represent
the polarization state of a light, can be given as a
function of the distance inside the PRS by [19,20]

~EðzÞ ¼
�
f½cosðszÞ − iΔβ=ð2sÞ sinðszÞ�A1ð0Þ − iðκ=sÞ sinðszÞA2ð0ÞgeiΔβz=2

fð−iκ�=sÞ sinðszÞA1ð0Þ þ ½cosðszÞ þ iΔβð=2sÞ sinðszÞ�A2ð0Þge−iΔβz=2eiðk1−k2Þz

�
; ð1Þ

with Δβ ¼ ðk1 − k2Þ −Gm, Gm ¼ 2πm=Λ, κ ¼
−

ω
2c

n2
on2

e γ51Eyffiffiffiffiffiffiffi
none

p ið1−cosmπÞ
mπ (m ¼ 1; 3; 5…), and s2 ¼ κκ�þ

ðΔβ=2Þ2, where k1 and k2 are the corresponding wave
vectors of OW and EW, Gm is the mth reciprocal vec-
tor corresponding to the periodicity of poling,Λ is the
period of PPLN, no and ne are the refractive indices of
OW and EW, respectively; γ51 is the electro-optical
coefficient, and Ey is the electric field intensity.

For a simplified case where the domain angle
vanishes (κ ¼ 0), Eq. (1) is hence derived as

~EðzÞ ¼
�
A1ð0Þ
A2ð0Þeiðk1−k2Þz

�
; ð2Þ

which describes the evolution of the polarization
state in a birefringent crystal. The orthogonal circu-
larly polarized modes Aþ and A− can be obtained by
means of the following relation:

�
Aþ ¼ ðA1 þ iA2Þ=

ffiffiffi
2

p
A− ¼ ðA1 − iA2Þ=

ffiffiffi
2

p : ð3Þ

The polarization state is then determined by the
complex ratio ξ ¼ Aþ=A−, with the azimuth of the po-
larization ellipse being θ ¼ 1=2 argðξÞ, where argðξÞ
takes the argument of a complex number, and the
ellipticity is given by e ¼ ðjξj − 1Þ=ðjξj þ 1Þ.

The evolution of the polarization state of the light
beam during propagation can be represented by a
variety of graphic methods. Two particularly useful
representations are the Poincare sphere [21] and
the phase plane [22]. The latter was selected here
to describe the evolution of the polarization state
of a light. From Eq. (2) it is easy to see that the

ellipticity and the azimuth of the polarization ellipse
are oscillatory functions of distance along the propa-
gation direction, with a period given by the beat
length L0 ¼ 2π=ðk1 − k2Þ. Starting from an arbitrary
input polarization state, say θ ¼ 30°, e ¼ 0, the polar-
ization evolves with distance along a trajectory
shown in Fig. 1(a), and the orbit closes after a dis-
tance equal to the beat length. Closed orbits repre-
sent oscillatory motions, which mean a polarized
light will maintain its polarization state after a beat
length.

The situation becomes significantly complicated in
the PRS when κ ≠ 0, in which case the periodical do-
main angle dramatically influences the evolution of
the polarization state inside the crystal. For a simpli-
fied case when Δβ ¼ 0, Eq. (2) is derived as

~EðzÞ ¼
�
A1ð0Þ cosðjκjzÞ − A2ð0Þ sinðjκjzÞ
fA2ð0Þ cosðjκjzÞ þ A1ð0Þ sinðjκjzÞgeiðk1−k2Þz

�
:

ð4Þ

The beat length L0 in this case is the minimum com-
mon multiple of L1 ¼ 2π=ðk1 − k2Þ and L2 ¼ 2π=jκj.
Starting from a linearly polarized light, for instance,
θ ¼ 0, e ¼ 0, the trajectory of evolution of the polar-
ization under specific conditions (L2 ¼ nL1, n ¼ 1, 2,
3) are shown in Figs. 1(b)–1(d). Unlike in Fig. 1(a),
where the evolution of polarization undergoes a sin-
gle closed path, unusual multipaths are found when
κ ≠ 0. Besides, the number of the paths scales with n.
Thus, the evolution of polarization can be controlled
by adjusting the coupled coefficient κ, which is asso-
ciated with the electric field intensity Ey. Likewise,
when κ ≠ 0, by adjusting external electric field and
Δβ ≠ 0, by adjusting the operating wavelength, the
beat length L0 is the minimum common multiple
of L1 ¼ 2π=ðk1 − k2Þ, L2 ¼ 2π=s, and L3 ¼ 2π=Δβ.
In general, the magnitudes of L1, L2 and L3 differ
dramatically with each other, and the evolution of po-
larization splits into considerable discrete paths,
which are shown in Figs. 1(e) and 1(f). In Fig. 1(e),
an linearly polarized light, for instance, θ ¼ 0,
e ¼ 0, is incident, and the external electric filed is
fixed at 8:5kV=cm. In Fig. 1(f), an arbitrary input po-
larization state, say θ ¼ 30°, e ¼ 0, is incident, and
the external electric filed is fixed at 7:2kV=cm. These
discrete paths even develop into areas, covering
more states of polarization than the case when
Δβ ¼ 0 does.

B. Evolution of Spin Angular Momentum

Many studies have shown that light also carries
angular momentum (AM). Generally, the AM of light

20 August 2011 / Vol. 50, No. 24 / APPLIED OPTICS 4729



is separated into SAM and orbit AM, with the former
determined by the polarization state of a light [4,23].
The control of SAM fundamentally aims at manipu-
lating light and molecules, particles, or cells in the
microscale and exploiting their interaction to create
highly creative device in physical, chemical, biologi-
cal, or medical science. As the evolution of polariza-
tion exhibits unusual characteristics in PRS, it is
necessary to further investigate the behavior of SAM
when light is propagating in it. When a monochro-
matic plane light with circular frequency ω is inci-
dent to the PPLN crystal along the X axis, it can
be expressed as the superposition of LHCP and
RHCP light:

~EðzÞ ¼
�
E1ðzÞ
E2ðzÞ

�

¼
�
Elef ðzÞ

�
1=

ffiffiffi
2

p
−i=

ffiffiffi
2

p
�
þ ErigðzÞ

�
1=

ffiffiffi
2

p
i=

ffiffiffi
2

p
��

: ð5Þ

According to the quantum theory, the energy of
each photon is ℏω, so the numbers of LHCP and
RHCP photons transmitted at the output surface
per unit area per second are respective average
Poynting energy flow divided by ℏw, i.e., Nlef ðzÞ ¼
cε0jElef ðzÞj2=2ℏw and NrigðzÞ ¼ cε0jErigðzÞj2=2ℏw.
Each LHCP photon contains the AM of ℏ and the
RHCP one −ℏ. The total SAM is hence given by

Fig. 1. (Color online) Phase-plane trajectories of the polarization state. (a), κ ¼ 0 and the input state of polarization is θ ¼ 30° and e ¼ 0.
(b)–(d), κ ≠ 0,Δβ ¼ 0, and L2 equals L1, 2L1 and 3L1 for (b), (d) and (e), respectively, with the input state of polarization satisfying θ ¼ 0 and
e ¼ 0. (e), (f), κ ≠ 0, Δβ ≠ 0. The initial state of polarization is θ ¼ 0, e ¼ 0 for (e) and θ ¼ −45°, e ¼ 1 for (f).

Fig. 2. (Color online) (a) shows the evolution of SAM inside the PRS for different phase mismatching conditions. The applied electric field
is E ¼ 4kV=cm; the wavelength ranges from 1520nm to 1560nm, and the wavelength that fulfills Δβ ¼ 0 is 1540nm. Likewise, the tem-
perature is 20 °C; (b) details the evolution of SAMwith distance for wavelength at 1544nm (Δβ > 0) and 1536nm (Δβ < 0), respectively. It
should be noted that the period of the PPLN is 21 μm, and the SAM inside the PRS is calculated every 21 μm started from the input port.
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MðzÞ ¼ cε0ðjElef ðzÞj2 − jErigðzÞj2Þ
2w

: ð6Þ

Consider a simplified case, that is, A1ð0Þ ¼ 1 and
A2ð0Þ ¼ 0. If κ ¼ 0, we have MðzÞ≡ 0. Otherwise, if
κ ≠ 0, the SAM oscillates in the PRS. Figure 2 pre-
sents the evolution of SAM inside the PRS. Three
kinds of evolving behavior are identified: one is
MðzÞ≡ 0, when Δβ ¼ 0; one is MðzÞ ≥ 0, when
Δβ > 0; and another is MðzÞ ≤ 0, when Δβ < 0. Here,
the case Δβ ¼ 0 is a critical condition that separates
the lights into two groups, with one (Δβ > 0) consist-
ing of more LHCP photons and the other (Δβ < 0)
consisting of more RHCP photons.

The SAM of lights with different wavelengths at a
given distance (z ¼ 2:1 cm) were also investigated
and shown in Fig. 3(a). The period of the PPLN is
21 μm. At a temperature of 20 °C, the wavelength
that satisfies Δβ ¼ 0 is calculated as 1540nm by
aid of semiller equation [24]. (a) indicates the nor-
malized SAM can be transferred from −1 to 1 by
adjusting the wavelength in the vicinity of the qua-
si-phase matched (QPM) condition (Δβ ¼ 0), which
can behave as a controllable “spanner”. Light with

wavelength beyond 1540nm can rotate a nanoscale
particle clockwise, while light with wavelength below
1540nm can exert an anticlockwise rotation on the
particle. Thus, by modulating the wavelength from
above 1540nm to below 1540nm, the normalized
SAM oscillates from 1 to −1, and hence, a particle
spins from clockwise to anticlockwise and with differ-
ent AM. (a) also suggests the QPM condition can be
detuned by temperature, and so does the SAM. About
2 °C is enough to realize the transfer of normalized
SAM from 1 to −1. (b) shows the SAM is also modu-
lated with the applied electric field whenΔβ ≠ 0, and
about 2kV=cm is able to continuously completely
transfer the SAM from −ℏ to ℏ. Because the SAM
can be controlled precisely by adjusting operating
wavelength or temperature as discussed, it takes lots
of convenience over the traditional method such as
by rotating a 1=4 wave plate mechanically.

3. Conclusion

In summary, the evolution of the polarization state
and the SAM is studied in PRS. The results show
that both the evolution of polarization and the evolu-
tion of SAM depend on the QPM condition. For cases
when Δβ ¼ 0, the trajectories of polarization evolu-
tion undergo unusual multipaths rather than a sin-
gle path happening in the bulk crystals. For cases
whenΔβ ≠ 0, the number of the paths is considerable
and the trajectories even evolve into areas. Besides,
whenΔβ ¼ 0, the total SAM keeps zero but oscillates
in the PRS when Δβ ≠ 0. The case Δβ ¼ 0 is also
found to be a critical condition that separates the
lights into two groups, with one (Δβ > 0) consisting
of more LHCP photons and the other (Δβ < 0) con-
sisting of more right-handed circularly photons.
Furthermore, the distribution of SAM along wave-
lengths can be detuned by temperature and the
SAM of a specific wavelength can be transferred from
−ℏ to ℏ by adjusting applied electric field or tempera-
ture, promoting a straightforward method to manip-
ulate the SAM of a light.
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