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We reveal the existence of the surface plasmonic lattice solitons (surface PLSs) at the boundary of a semi-infinite
metallic-dielectric periodic nanostructure. We find that the truncation of the periodic structure imposes a threshold
power for the existence of surface PLSs, and significantly enhances the modal localization. The propagation and
excitation of surface PLSs as well as their potential application in the all-optical subwavelength switching are also
demonstrated. © 2012 Optical Society of America
OCIS codes: 190.6135, 190.4360, 240.6680.

Light interaction with photonic periodic lattice has been
studied extensively because of its fundamental and prac-
tical importance [1]. The study of such interaction in the
presence of nonlinear optical response has drawn great
attention as the nonlinearity affords light-controlled tun-
ability [2,3]. Discrete solitons [4,5], or more generally lat-
tice solitons, are one of the most exciting outcomes of
such nonlinear interaction, and they were investigated
in perfect lattice and various inhomogeneous lattice
structures. Especially worthy to be mentioned is the so-
called surface lattice solitons occurring at the boundary
of a truncated lattice [6–8], which differ profoundly from
their counterpart in homogenous lattices. So far, how-
ever, surface lattice solitons are all studied at the edge
of dielectric waveguides.
There is increasing interest in pushing the study of non-

linear light-lattice interaction into the subwavelength re-
gion, where the conventional dielectric lattice is replaced
by a plasmonic lattice [9–12]. Plasmonic lattice is com-
posed of alternative nanoscale metallic and dielectric ma-
terials. Tunneling of surface plasmonic polaritons (SPPs)
between adjacent metallic components in plasmonic
lattices might be inhibited by the nonlinearity of the di-
electric medium, leading to the formation of so-called
plasmonic lattice solitons (PLSs) [10]. In this Letter,
we truncate the plasmonic lattice and consider the influ-
ence of the resulting lattice boundary on PLSs. We reveal
the existence of a new type of nonlinear surface states,
that is, surface PLSs. The properties of surface PLSs
are crucially determined by the boundary effect. This in-
cludes the occurrence of a threshold power for their for-
mation and the double-enhanced modal localization in
comparisonwith their PLS counterparts. The propagation
and excitation of surface PLSs are studied in detail, and
their potential application in all-optical switching at the
deep-subwavelength scale is also presented.
We thus consider the wave propagation along the inter-

face between a uniform media (x < 0) and a one-
dimensional nonlinear plasmonic lattice (x > 0). Without
lossofgenerality, unlessotherwise stated, thewidthofme-
tal and Kerr-type nonlinear dielectric layers are fixed as
tm � 60 nm and td � 100 nm, respectively. The refractive
index of the nonlinear layers is assumed to be intensity-
dependent as nNL � �������

εNL
p � 1.5� n2I, where n2 �

�1.8 × 10−17 m2 ∕Wis theKerr coefficient and the positive
(negative) sign represents self-focusing (self-defocusing)

nonlinearity, respectively. Intensity I � �1 ∕2�ε0cn0jEj2.
The complex permittivity of the metal (silver) εm is taken
from Johnson and Christy [13], which is εm � −129�
3.28i for the wavelength of λ � 1550 nm. Finally, the uni-
form region is assumed to be linear with a permittivity
εd � 2.25. The results do not change visibly if the
intensity-dependent permittivity is also included in this
region.

To describe nonlinear stationary modes localized at
the surface of the lattice, we consider TM waves
(Ey � Hx � Hz � 0) with the stationary form:

Ex�x; z; t� � �ux�x�x̂�ei�βz−ωt�; (1)

Hy�x; z; t� � �vy�x�ŷ�ei�βz−ωt�; (2)

where ux and vy represent a modal profile independent of
z (z is the propagation direction), with β being the soliton
propagation constant. Substituting Eqs. (1) and (2) into
Maxwell’s equations yields the following equations [9]:
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where z0 �
�������������
μ0 ∕ε0

p
is the vacuum impedance, ε denotes

the material permittivity as a function of x, and k0 �
2π ∕λ. The soliton solutions were numerically found by
a self-consistent method [14]. For simplicity, the solu-
tions given below are found without taking into account
the metallic loss. We confirmed, however, that inclusion
of loss does not change the results significantly.

Surface PLSs are found to be centered their peak am-
plitude in different nonlinear dielectric layers. Figure 1
shows representative profiles whose peak amplitudes re-
side at the first or the second waveguide (denoted as
m � 1 and m � 2 modes, respectively) under focusing/
defocusing Kerr-type nonlinearities. It can be seen that
the solitons’ amplitudes decay exponentially fast from
their peak-amplitude-resided waveguide into both the
uniform and the lattice regions. Because of the boundary
effect, however, the decay speed of amplitude in the
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uniform region is faster than that in the lattice region.
Thus, surface PLSs feature asymmetric profiles. Their
asymmetry quickly becomes insignificant when their
peak amplitude shifts to the deep lattice region. In fact,
for nonlinear index change ofΔn � 0.05, surface PLSs of
m � 4 are visually symmetric already. Note that the ap-
pearance of staggered (unstaggered) surface PLSs in the
focusing (defocusing) nonlinearity is a consequence of
the inverted diffraction relations that is unique to the
plasmonic-lattice systems [9,10].
The characteristic power of surface solitons, defined

as P � �1 ∕2� R Re�ExH�
y�dx, is a conserved quantity in

the sense that it remains constant during the propagation
of surface solitons. Figures 2(a) and 2(b) plot soliton
power versus propagation constant β. Notably, surface
PLSs feature some critical power Pc, below which no so-
lutions can be found. This property puts a minimum de-
mand on the laser power to excite such surface solitons,
which is in sharp contrast to the PLSs in the homogenous
plasmonic lattice [10], as the existence of the latter re-
quires no threshold power (i.e., Pc � 0). As one expects,
the threshold power substantially decreases with the
increasing distance of the peak-centered waveguide from
the lattice boundary, as the comparisons shown in
Figs. 2(a) and 2(b) for mode m � 1 and m � 2. The
influence of metallic width on Pc is also studied [see
Fig. 2(c)]. The dramatic increase of Pc with decreasing
metallic width is attributed to the strong coupling of SPPs
at the opposite surfaces of each of the metallic layers,
thus creating the enhanced diffraction, which in turn
requires stronger nonlinearity to balance it.
We emphasize that, essentially different from the

surface solitons in the truncated pure-dielectric lattice,
surface PLSs reported in this Letter are not diffraction
limited, and thus their modal extensions could be nanos-
cale. To quantitatively characterize the degree of modal
localization, we plot the fraction of power concentrating
in the first waveguide (for m � 1 modes) versus the
nonlinear index change. This result is shown in Fig. 2(d).

One sees that for a moderate index change ofΔn � 0.05,
more than 90% of the soliton power is confined in the first
waveguide, indicating that the transverse size of surface
PLSs is less than 0.1λ. Importantly, in the perfect plasmo-
nic lattice, the same amount of index change is found to
concentrate mode size of 0.17λ [see Figs. 1(a) and 1(b)
for the profiles of solitons in homogenous plasmonic
lattices], and thus the energy concentration is almost
double enhanced in the presence of lattice boundary.
Note that such significant modal compression cannot
be achieved by truncating the dielectric lattices, because
the surface lattice solitons are limited by diffraction
and thus cannot get further compression if the solitons
are already at the subwavelength scale. Therefore, the
possibility of further significant modal compression by
lattice truncation is a unique property of plasmonic lat-
tice, provided that the associated surfaces PLSs exist.

To prove that the above numerically found solutions
are indeed stationary eigenmodes of the associated trun-
cated plasmonic lattice, we launch the solutions into
the structure and propagate them using finite element
method (FEM) software (Comsol Multiphysics). Typical
propagation results are shown in Figs. 3(a) and 3(b); in-
deed, the profiles remain unchanged after a long distance
(>100 μm). Moreover, for propagation results shown in
Figs. 3(c) and 3(d), the realistic metallic loss is taken into
account. From the loss-included mode analysis, for
λ � 1550 nm, surface PLSs have the typical absorption
coefficients of ∼400 cm−1 for staggered solitons and
∼250 cm−1 for unstaggered solitons, which corresponds
to the decay length ∼25 μm and ∼40 μm, respectively. As
clearly seen from Figs. 3(c) and 3(d), even in the lossy
case, the soliton propagation is still visible in tens of
micrometers.

We finally examine the generation of surface PLSs by
means of a single-waveguide excitation setup. InFigs. 4(a)
and 4(b), a TM-polarized incident light is launched into
the first plasmonic waveguide. Experimentally, such
excitation might be achieved by, for example, tapered
couplers [15] or dipole nanoantennas [16]. We observe

Fig. 1. (Color online) Normalized electric field (Ex) profiles
of surface PLSs for the nonlinear index change of (a),
(c) Δn � 0.05; (b), (d) Δn � −0.05. The gray regions stand
for metallic layers, while the white regions for dielectric do-
mains. The red (dashed) lines in (a) and (b) represent the
electric field (Ex) profiles of PLSs in the corresponding homo-
genous plasmonic lattices.

Fig. 2. (Color online) (a), (b) Power versus normalized propa-
gation constants for staggered and unstaggered surface PLSs,
respectively. (c) Threshold power Pc of the unstaggered surface
PLSs (m � 1) as a function of metal layer width tm. (d) Fraction
of power concentrating in the first waveguide versus nonlinear
index change Δn, for the unstaggered surface PLSs (m � 1).
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that at an input power of 360 W ∕μm,most of light remains
within the first waveguide even after a distance of 40 μm
[see Fig. 4(a)], indicating the formation of surface PLSs at
this power level. As the input power decreases, linear dif-
fraction gradually dominates, resulting in a significant
shifting of the SPP beam toward the depth of the lattice
[see Fig. 4(b)]. Thus, one could precisely select the output
position of light through the control of the input power.
Figure 4(c) shows the dependence of the location of
the peak amplitude of light at the output facet of a
plasmonic lattice, in both the ideal and lossy cases. Inter-
estingly, the figure shows that in the lossy waveguide,
switching the output position from the waveguide 6
to the waveguide 1 requires an incident power of
460 W ∕μm (Δn ≈ 0.11), which is nearly twice the value
of that in the lossless case. We finally mention that excita-
tions from other waveguide (instead of the first wave-
guide) result in similar dependences of output position
on input power.
In conclusion, we have studied the existence and prop-

erties as well as propagations of a new type of surface
spatial solitons in a nonlinear semi-infinite plasmonic
lattice, that is, surface PLSs. The impact of the lattice
boundary on such surface states is elucidated. The
boundary imposes a minimum power for the occurrence
of surface PLSs, and the truncated lattice geometry leads
to a significant modal compression.
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Fig. 3. (Color online) Propagation of (a) staggered surface
PLSs, and (b) unstaggered surface PLSs in the lossless plasmo-
nic lattices, corresponding to Δn � 0.05 and Δn � −0.05,
respectively. λ � 1550 nm. (c), (d) propagation of the same
surface PLSs in the real (lossy) plasmonic lattices.

Fig. 4. (Color online) Nonlinear propagation of lossy SPP
beams using single-waveguide excitation with input power
(a) 360 W ∕μm and (b) 16 W ∕μm. λ � 1550 nm. (c) The output
position of SPP beams versus input power, for a plasmonic
lattice with length of 50 μm.
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