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We show that light tunneling inhibition may take place in suitable dynamically modulated waveguide arrays for
light spots whose features are remarkably smaller than the wavelength of light. We found that tunneling between
neighboring waveguides can be suppressed for specific frequencies of the out-of-phase refractive index modulation,
affording undistorted propagation of the input subwavelength light spots over hundreds of Rayleigh lengths. Tun-
neling inhibition turns out to be effective only when the waveguide separation in the array is above a critical thresh-
old. Inclusion of a weak focusing nonlinearity is shown to improve localization. We analyze the phenomenon
in purely dielectric structures and also in arrays containing periodically spaced metallic layers. © 2013 Optical
Society of America
OCIS codes: (050.6624) Subwavelength structures; (190.2055) Dynamic gratings.
http://dx.doi.org/10.1364/OL.38.002846

One of the most exciting directions in modern optics is
the development of new strategies for controlling the
propagation path and diffraction rate of the eigenmodes
that remain invariant on propagation or evolve in a de-
sired fashion. Very frequently such strategies rely on
the use of artificial composite materials having a spatially
inhomogeneous refractive index [1]. Thus, an unprec-
edented freedom in the engineering of the spatial
dispersion afforded by periodic structures, such as pho-
tonic crystals and coupled waveguide arrays, allows the
observation of many intriguing phenomena that do not
occur in natural uniform materials [2]. Among such phe-
nomena is the possibility to change the strength and sign
of diffraction, as was demonstrated in straight waveguide
arrays, or in those which bend periodically along the
propagation path [3,4]. In general, a broad spectrum of
periodic variations of the refractive index may induce
resonant cancellation of diffractive broadening [5]. This
physical effect is reminiscent of the arrest of wave packet
tunneling, by external driving fields, studied in electronic
systems [6,7]. In optics, two manifestations of this effect
have been observed experimentally. Namely, dynamic
localization in periodically curved arrays [8–14] and in-
hibition of tunneling in straight arrays with an out-of-
phase modulation of the longitudinal refractive index
in the neighboring channels [4,15–20].
However, all these schemes for allowing the control of

the rate of diffractive broadening have only been realized
in the paraxial regime when all characteristic scales,
such as the beam width and array period, substantially
exceed the wavelength of light. In this regime, light
propagation can be modeled by the scalar paraxial Schrö-
dinger equation that also describes the evolution of ex-
citations in a number of other physical systems
besides classical optics [21].
At the same time, the development of approaches for

diffraction control at the subwavelength scale may open
up important opportunities for the miniaturization of
photonic devices for confining and manipulating light.
Rapidly developing nanofabrication techniques already

allow the creation of optical structures with characteris-
tic scales much smaller than the wavelength of light. The
large diffraction angle inherent to the subwavelength
light spots excludes the use of the paraxial approxima-
tion for the description of their propagation in such struc-
tures. The coupling of transverse and longitudinal field
components can no longer be ignored for such beams
and one must take into account the vector nature of light.
Therefore, a salient question arises: can dynamically
varying guiding structures be used for the control and
inhibition of the strong diffraction of subwave-
length beams?

In this Letter, using the solution of the full set of
Maxwell’s equations, we show that resonant inhibition
of tunneling can be achieved, even for subwavelength
light spots in purely dielectric (or metallic-dielectric)
periodic structures where both the width of the
waveguides and their separation are smaller than the
wavelength of the light. We found that a necessary ingre-
dient of tunneling inhibition is an out-of-phase longi-
tudinal refractive index modulation in neighboring
guiding channels. The rate of diffraction broadening of
light beams in such a structure is controlled by the detun-
ing of the modulation frequency from one of the resonant
values at which the subwavelength spot remains con-
fined in the excited guide. We show how downscaling
of the entire structure affects the effectiveness of the
tunneling inhibition.

We start our analysis by considering the propagation of
a TM-polarized light beam along the z-axis of a dielectric
material with transversally and longitudinally modulated
refractive index. The evolution of the components of the
electric and magnetic fields �Ex;Hy;Ez� that remain non-
zero for selected polarization states is governed by the
reduced system of Maxwell’s equations,
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where the longitudinal component of the electric field
Ez � �i∕ε0εrω�∂Hy∕∂x was excluded from Eq. (1) for
convenience, ε0 and μ0 are the vacuum permittivity
and permeability, and ω is the frequency of light.
εr�x; z� is the relative permittivity of the underlying
structure, whose shape, in the case of a linear dielectric
material, is described by the function εr�x;z��
εbg�p

P�M
m�−M �1��−1�mδ sin�ωzz��×exp�−�x−md�2∕a2�,

where εbg is the relative background permittivity, δ is the
longitudinal modulation depth, the parameters a, p char-
acterize the width and depth of the Gaussian waveguides,
d is the separation between neighboring waveguides, and
ωz is the frequency of modulation of the permittivity in
the longitudinal direction (below we will normalize it
by the frequency ωb of power switching between two
unmodulated guides).
We fix the wavelength of the light beam λ � 632.8 nm,

select εbg � 2.25, p � 1.7, and consider subwavelength
waveguides with the width of a � 100 nm ≪ λ and sep-
aration d � 700 nm or even smaller. We used at the input
the eigenmode of the isolated waveguide that can be ob-
tained as a stationary solution �Ex�x; z�; Hy�x; z�� �
�Ex�x�eiβz; Hy�x�eiβz� of Eqs. (1) with δ � 0. The wave-
guide width and depth were adjusted such that it sup-
ports only the guided mode whose shape is shown in
Fig. 1(a). One can see that the longitudinal field compo-
nent is comparable in amplitude to the transverse field
component. The exponential tails of such a mode extend
beyond a narrow subwavelength waveguide, but its inte-
gral width remains well below d � 700 nm. If such a
mode is launched into the system of two unmodulated
waveguides one observes periodic power exchange be-
tween channels with the frequency ωb ≈ 5.6 × 104 m−1.
Further reduction of the waveguide width down to
50 nm does not lead to a pronounced decrease in the
mode width (due to the diffraction limit) even if the depth
p of the waveguide is increased so as to keep the same
beating frequency ωb.
Figure 2(a) illustrates the propagation dynamics in an

unmodulated waveguide array when only a single
channel is excited at z � 0. One can see that already
at z � 100 μm light expands over approximately ten
waveguides, i.e., the diffraction angle is considerable,
despite the transverse refractive index modulation.

The characteristic “discrete diffraction” pattern is ob-
served for both the transverse and longitudinal electric
field components. This picture changes significantly if
the waveguides feature out-of-phase longitudinal modu-
lation with δ � 0.2 at properly selected frequencies ωz. In
this case, the tunneling to neighboring waveguides due to
the overlap of the tails of their guided modes is almost
completely inhibited and the light remains confined in
the excited waveguide as shown in Figs. 2(b) and 2(c),
which correspond to the primary and secondary resonant
frequencies [see Fig. 3(a)]. Notice that our finite
element method takes into account backward reflection,
which was negligible in all cases considered. The
inhibition of tunneling occurs because out of phase re-
fractive index modulation results in a renormalization
of the effective coupling constant κeff � κJ0�μδ∕ωz�
(here κ ∼ ωb is the coupling constant in the unmodulated
array) characterizing the rate of power exchange
between the waveguides. This can be shown in a
“discretized” version of Eq. (1) operating with modal
amplitudes in coupled guides (under the assumption of
weak coupling, the derivation procedure for the nonpar-
axial case leads to discrete nonlinear Schrödinger
equation [18]). The possibility of inhibiting the strong
diffraction of the nonparaxial light spots by longitudinal
refractive index modulations is one of the central results
of this Letter.

The effectiveness of the tunneling inhibition can be
characterized by the dependence of the distance-
averaged power fraction trapped in the excited channel,
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Fig. 1. Transverse and longitudinal electric field distributions
in linear modes supported (a) by the purely dielectric wave-
guide when εr�x� � εbg � p exp�−x2∕w2� for x∕d ∈ �−∞;�∞�
and (b) by the dielectric waveguide sandwiched between
semi-infinite metal layers when εr�x� � εbg � p exp�−x2∕w2�
for jx∕dj ≤ 0.464 and εr�x� � εm for jx∕dj > 0.464.

Fig. 2. Evolution of the modulus of the transverse Ex
(top row) and longitudinal Ez (bottom row) electric field
components for modulation frequencies (a) ωz∕ωb � 0;
(b) ωz∕ωb � 7.4; (c) ωz∕ωb � 3.19; and (d) ωz∕ωb � 6. In all
cases the propagation distance is 200 μm, while the transverse
width of the depicted window is 7.7 μm.
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on the frequency of the longitudinal modulation ωz
shown in Fig. 3(a) for the case of L � 200 μm. One
observes several resonance spikes, with the primary
resonance corresponding to the highest modulation
frequency. The density of the resonances grows with a
decrease in ωz. The inhibition is most effective in the pri-
mary resonance where, for the parameters of our array,
Uav ≈ 0.94. The propagation dynamics corresponding to
the primary and secondary resonances is illustrated in
Figs. 2(b) and 2(c), while Fig. 2(d) shows the slow beam
broadening for the off-resonant modulation frequency.
A focusing nonlinearity of the medium further enhan-

ces the tunneling inhibition. In order to study the impact
of nonlinearity, we assume the presence of a Kerr con-
tribution to the dielectric permittivity εr proportional
to the total field intensity jExj2 � jEzj2. The increase of
the peak nonlinear contribution δnnl to the refractive in-
dex results in a simultaneous broadening of all resonan-
ces in Uav�ωz� dependence (this effect is illustrated in
Fig. 3(b) for primary resonance), while resonant frequen-
cies are not affected by the nonlinearity. Remarkably,
due to the considerable nonlinearity-induced broadening
of the resonances, one can achieve a nearly complete in-
hibition of tunneling for nonresonant modulation
frequencies at very low power levels. In Fig. 4 we show
how diffraction is replaced by localization upon the
increase of the nonlinear contribution to the refractive
index, up to δnnl ≈ 0.003 in the case when the modulation
frequency ωz is detuned by approximately 10% from the
frequency of the primary resonance. This nonlinear con-
tribution is exceptionally small in comparison to the δnnl
values required for the excitation of subwavelength
solitons in unmodulated systems [22–28]. Therefore,

longitudinal refractive index modulation dramatically re-
duces the thresholds for excitation of localized nonlinear
modes. We found that an increase of the nonlinear con-
tribution to the refractive index results in a monotonic
growth of the resonance width δωz defined at the level
0.7 max�Uav� [Fig. 3(c)]. The value δωz becomes compa-
rable to the resonance frequency already at δnnl � 0.004.

As mentioned above, the subwavelength mode that we
used for the excitation of the central waveguide is nearly
diffraction-limited and further reduction of the wave-
guide width a at a fixed period d does not qualitatively
change the dynamics of the tunneling inhibition if one
adjusts the waveguide depths to maintain a fixed cou-
pling strength. Further miniaturization of our system
can be achieved at the expense of a reduction in the sep-
aration between the waveguides. The dependence on this
separation of the maximal distance-averaged power frac-
tion in the excited channel achieved in the primary res-
onance is shown in Fig. 5(a). In simulations we tuned the
waveguide depth p in order to get the same beating
frequency ωb for different d values. This allows direct
comparison of the effectiveness of the tunneling inhibi-
tion for different d values, because identical ωb implies
equal diffraction strengths in the different arrays. For
d∕a ≥ 7, the tunneling inhibition is almost equally strong
for all array periods, and its effectiveness rapidly drops
for d∕a ∼ 5 indicating the existence of a minimum scale
below which longitudinal modulation cannot compen-
sate for diffractive broadening. The scaled primary reso-
nance frequency grows with increasing d [Fig. 5(b)].

Finally, we found that inhibition of tunneling is pos-
sible not only in purely dielectric subwavelength struc-
tures, but also in the case when narrow 50 nm
metallic layers are introduced between 100 nm wide
Gaussian waveguides separated by the distance
d � 700 nm. As before, we suppose that the refractive
index of dielectric Gaussian waveguides is modulated
in the longitudinal direction. The permittivity of metal

Fig. 3. (a) Distance-averaged power in the excited waveguide
versus ωz∕ωb in the linear waveguide array; (b) Uav versus
ωz∕ωb at δnnl � 0 (curve 1) and δnnl � 0.0025 (curve 2);
and (c) width of the primary resonance as a function of the non-
linear contribution to the refractive index. In all cases,
z � 200 μm.

Fig. 4. Evolution of jExj (top row) and jEzj (bottom row) upon
propagation in the nonlinear modulated waveguide array for
δnnl � 0 (a), δnnl � 0.00063 (b), δnnl � 0.00188 (c), and δnnl �
0.00301 (d). In all cases ωz∕ωb � 6.7, while the transverse and
longitudinal scales are the same as in Fig. 2.
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(silver) εm ≈ −20 − 0.19i was calculated using the Drude
model. Initially, we neglect the losses in the metal and
assume that Im εm � 0. The example of the eigenmode
of an unmodulated Gaussian waveguide, sandwiched be-
tween two semi-infinite metal layers, that was used as an
input in simulations of the propagation is shown in
Fig. 1(b). The metal strongly alters the shape of the mode
and leads to sharp field variations near the interface with
the dielectric. Still, the modal field considerably pene-
trates the metal region, leading to the possibility of an
evanescent coupling between neighboring waveguides.
This coupling is illustrated in Fig. 6(a) for an unmodu-
lated dielectric-metal array of waveguides. The inhibition
of tunneling in the primary resonance is shown in
Fig. 6(b), while the propagation for an off-resonant fre-
quency is shown in Fig. 6(d). Notice that, in the presence
of metal, the radiation emitted from the central wave-
guide is more pronounced. Since the metallic stripes

are narrow, the ohmic losses inherent to metallic struc-
tures do not affect the tunneling inhibition, in Fig. 6(c).

In conclusion, we showed that longitudinal modulation
of the parameters of subwavelength waveguide arrays
can lead to resonant suppression of diffraction, even
for fully nonparaxial light spots. Our results open up
the possibility of controlling light at subwavelength
scales in unprecedented ways.

The work of C. Huang and F. Ye was supported by the
NSFC, Grant No. 11104181.
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Fig. 5. (a) Maximal distance-averaged power and (b) primary
resonance frequency, versus separation between waveguides.
In all cases the propagation distance is z � 200 μm. Dashed line
corresponds to separation used in Figs. 1–4.

Fig. 6. Inhibition of tunneling in dielectric-metal waveguide ar-
rays. The top row shows jExj, while the bottom row shows jEzj.
(a) Unmodulated array, (b) modulated array with ωz∕ωb � 2.09
without losses in the metal, (c) modulated array with losses in
the metal, and (d) modulated array with ωz∕ωb � 3. In all cases,
the propagation distance is 50 μm, while the transverse width of
the depicted window is 7.7 μm.
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