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We study two-component surface solitons in a pair of linearly coupled truncated waveguiding arrays with the Kerr
nonlinearity. Symmetric solitons have a very small stability area, while those that are antisymmetric and asymmetric
are stable in vast regions. Below a critical value of the coupling constant, branches of the symmetric and asymmetric
modes separate, and accordingly, asymmetric solitons cease to bifurcate from the symmetric ones, providing the first
example of asymmetric modes in nonlinear couplers that do not originate from symmetric counterparts. © 2013
Optical Society of America
OCIS codes: 190.0190, 190.6135.

Directional couplers, built of two parallel cores coupled
by evanescent fields, are one of the basic elements in op-
tical circuitry. If the Kerr coefficient is large enough, the
energy exchange between the cores depends on the
power [1], which gives rise to all-optical light switching
[2–5]. Realizations of nonlinear couplers have been elab-
orated in many other settings, including semiconductor
waveguides [4], twin-core Bragg gratings [6], plasmonic
media [7], parallel arrays of discrete waveguides [8,9],
cores with nonlocal nonlinearity [10], and nonlinear
PT -symmetric couplers [11,12].
The operation of a nonlinear directional coupler can be

understood in terms of its symmetric, antisymmetric, and
asymmetric supermodes. The asymmetric states have no
counterparts in linear systems, appearing from the sym-
metric ones via a symmetry-breaking bifurcation (SBB)
[3]. Further, the interplay of the intracore nonlinearity
and temporal dispersion or spatial diffraction with the
linear coupling gives rise to solitons, which also may
be classified as symmetric, antisymmetric, and asymmet-
ric. The instability of symmetric solitons [13] triggers the
SBB of the subcritical [14] type (unlike the supercritical
SBB of uniform states in the nonlinear coupler [3]). SBBs
for solitons were studied in detail in the basic [15–17] and
extended [6–12] models. In particular, the SBB keeps its
subcritical character for two-component discrete soli-
tons in discrete couplers [8].
Surface modes in semi-infinite waveguiding arrays

have attracted a great deal of interest too, in theoretical
[18–21] and experimental [22–25] studies alike. A natural
setting, which is the subject of the present Letter, is the
SBB and asymmetric surface solitons in a truncated dual-
core array, see the inset in Fig. 1(a). Such a system can be
readily created in experiments [22,23]. Using a system-
atic numerical analysis and the variational approxima-
tion (VA), we demonstrate that the surface strongly
alters properties of asymmetric modes. In particular, a
completely new feature is that, when the intercore cou-
pling constant falls below a certain value, asymmetric
modes do not bifurcate from symmetric ones, but exist
as a disjoint family.
The light propagation along axis z in a pair of parallel-

coupled semi-infinite waveguiding arrays is described
by the following equations for field amplitudes un
and vn:

i
dun

dz
� −

1
2
�un�1 � un−1 − 2un� − junj2un − kvn; (1)

i
dvn
dz

� −
1
2
�vn�1 � vn−1 − 2vn� − jvnj2vn − kun; (2)

at n ≥ 2. At the edge (n � 1), we set u0 � v0 � 0 in the
equations. Here the intersite coupling and self-focusing

Fig. 1. (Color online) (a), (c), and (e), profiles of three types of
surface solitons, viz., symmetric (unstable), antisymmetric (sta-
ble), and symmetric (stable), respectively, for b � 2.5 and two
different values of the coupling constant, k � 0.8 and 1.5. The
inset in (a) is a sketch of the present system. Total power P is
shown as a function of propagation constant b for the same
three types in panels (b), (d), and (f), respectively. Insets in
(b) and (d) zoom the boxed areas. Stable and unstable branches
are plotted by solid and dashed curves, respectively. “Analyti-
cal” Pmin in (b) is the value predicted by VA.
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coefficients are scaled to be 1, while k accounts for the
coupling between the arrays.
Stationary solutions with real propagation constant b

are looked for as fun; vng � fUn; Vng exp�ibz� with real
amplitude profiles Un, Vn. We address fundamental dis-
crete solitons pinned to the surface, i.e., with jUnj and
jVnj attaining a maximum at n � 1 (solitons with the
maximum shifted from the surface are possible too
[20]). Representative examples of numerically found
symmetric (Un � Vn), antisymmetric (Un � −Vn), and
asymmetric (jUnj ≠ jVnj) surface modes are shown in
the left column of Fig. 1.
Properties of the discrete solitons are summarized in

Figs. 1(b), 1(d), 1(f) and Fig. 2. The total power,
P � Pu � Pv ≡

P∞
n�1�U2

n � V2
n�, is plotted versus b in

the right column of Fig. 1. All branches feature a mini-
mum power Pmin, which is a typical feature of surface
solitons [18–21], in contrast to discrete solitons in infinite
lattices [14]. The quick termination of the power curves
to the left of P � Pmin is explained by abrupt growth of P
due to delocalization of the solitons. The U-shaped P�b�
curves for symmetric and antisymmetric solitons differ
solely by a horizontal shift, as their power depends on
combination �b∓ k�, hence they share a common thresh-
old, Pmin � 3.2655. The situation is different for asymmet-
ric solitons, whose P�b� curve significantly depends
on k [Fig. 1(f)]. Their threshold power increases with
k, and at k > 1.5 the negative-slope branch of the power
curve disappears, leaving P�b� a monotonously increas-
ing function.
The family of asymmetric solitons is quantified in Fig. 2

by the asymmetry measure Θ � �Pv − Pu�∕P. Two top
curves show that the asymmetric solitons emerge from
symmetric ones via a subcritical SBB at 1.1 < k < 1.5,
which switches into a supercritical bifurcation at
k > 1.5. The switch between the two different types of
the SBB occurs in other models too; in particular, it
follows the transition from the uniform coupling to that
at a single site [9].
The most interesting finding demonstrated by Fig. 2 is

that the asymmetric family completely separates from
the symmetric one at k < kcr ≈ 1.1. In this case, the asym-
metric discrete solitons exist at Θ exceeding a certain
minimum value, hence they cannot bifurcate from sym-
metric modes. This feature, which has no counterpart in
previously studied nonlinear couplers, is the main result
of this Letter. It is explained by the fact that, at k � kcr,
the SBB happens exactly at P � Pmin, i.e., the SBB

coincides with the saddle-node bifurcation that is respon-
sible for the U-shape of the P�b� curve for the symmetric
solitons, and at k < kcr the U-shaped power curves for the
symmetric and asymmetric modes separate. The memory
of the overlap of the two bifurcations at k � kcr makes
the symmetric-soliton family completely unstable
at k < kcr.

The stability of the soliton families was tested by sim-
ulations of the perturbed evolution. Stable and unstable
branches are indicated in Figs. 1 and 2 by solid and
dashed lines, respectively. The result is that all the
branches with dP∕db < 0 are unstable, while the asym-
metric solitons are always stable at dP∕db > 0, in accor-
dance with the Vakhitov–Kolokolov (VK) criterion [14].
Antisymmetric solitons are chiefly stable at dP∕db > 0
[oscillatory destabilization of the branch with k � 1.5
at large values of b, observed in Fig. 1(d), cannot be de-
tected by the VK criterion]. The symmetric solitons are
stable at dP∕dk > 0 (if the above-mentioned separation
of the symmetric and asymmetric branches does not hap-
pen) prior to the SBB. As seen in Fig. 1(b), this condition
is met only for a small part of the P�k� curve at b � 1.5.

A typical example of the unstable propagation of
symmetric solitons (Fig. 3) demonstrates that, as ex-
pected, unstable symmetric solitons quickly transform
into an asymmetric stable mode, losing almost no power.
Simulations of the propagation of unstable asymmetric
solitons, which belong to the portion of the respective
power curve with dP∕dk < 0 (not shown here in detail)
demonstrate that they transform into approximately
symmetric delocalized modes, which extend into the
depth of the lattice.

Numerical results presented above can be explained
by a VA. Following [26], we adopt the ansatz for the
stationary solution as fUn; Vng � fA;Bg exp�−an�, with
respective powers fPu; Pvg � �1 − e−2a�−1fA2; B2g. The
substitution of this into the Lagrangian of the stationary
version of Eqs. (1) and (2) yields L � �1∕2��b � 1 − e−a�
�Pu � Pv� − k

�����������
PuPv

p
− �1∕4��tanh a��P2

u � P2
v�, from

Fig. 2. (Color online) (a) Dependence of asymmetry measure
Θ on the soliton’s power at different values of k. (b) Power at
which asymmetric solitons bifurcate from asymmetric ones, as
predicted by the VA and found in the numerical form.

Fig. 3. (Color online) (a), (b), evolution of two components of
an unstable symmetric soliton at k � 1.5, b � 2.6. (c), (d), the
corresponding evolution of amplitudes of the two components
and the soliton’s asymmetry.
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which the corresponding Euler–Lagrange equations fol-
low, ∂L∕∂Pu;v � ∂L∕∂a � 0. Analysis of these equations
for the symmetric solitons demonstrates that the VA cor-
rectly predicts the U-shape of the P�b� curves, with the
minimum power P�VA�

min � 16∕�3
���
3

p
� ≈ 3.08, which differs

by 5.7% from its numerical counterpart, see Fig. 1(b).
Further, the SBB point can be predicted by considering

a solution to the variational equations with an infinitely
small �Pu − Pv�. This condition leads to a system of
equations for the power and inverse width of the soliton
at the SBB: Pbif � k coth abif , sinh�2abif� � k exp�abif�.
A numerical solution of the system yields a curve
Pbif�k� displayed in Fig. 2(b). Although it starts at value
k�VA�cr � 4∕�3

���
3

p
� ≈ 0.77, which is significantly smaller

than its numerically found counterpart, kcr ≈ 1.1 (the
discrepancy is a consequence of inaccuracy of the ansatz
at the critical point), the predicted dependence Pbif�k� is
quite close to the numerical one at k > 1.1.
In conclusion, we have studied the influence of the

surface on symmetric, antisymmetric, and asymmetric
solitons in the truncated nonlinear lattice coupler. The
noteworthy finding is the separation of the symmetric
and asymmetric branches below the critical value of
the coupling constant. In that case, the asymmetric sol-
itons do not bifurcate from the symmetric ones, but exist
as disconnected stable modes. This feature was not
found in previously studied couplers.
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