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We demonstrate an integrated optofluidic microring dye laser with a relatively low threshold on a polydimenthylsiloxane 
(PDMS) chip. The chip was fabricated through conventional soft lithography. It consists of a liquid waveguide with microring 
structure providing the feedback. A reduced threshold is realized due to the unique design of the bus waveguide across the 
center of the microring structure, which results in a great reduction in the cavity losses. Laser dye rhodamine 6G (R6G) dis-
solved in benzyl alcohol was injected into the microfluidic channel as the gain medium. When the dye laser was pumped with 
a pulsed laser at 532 nm, the dye laser oscillation was achieved with a threshold of only 4−5 μJ mm-2. The convenience in fab-
rication and operation makes the optofluidic microring dye laser a promising underlying photonic component in the integrated 
optofluidic systems. 
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1  Introduction 

Optofluidic dye lasers have drawn much attention in the 
past decade due to their great potential as photonic laser 
sources in integration with micro total analysis systems 
(μ-TAS) for lab-on-a-chip applications [1−5]. To date, 
optofluidic dye lasers have shown unique capabilities in 
biosensing applications by synergizing optofluidics and 
laser technology [6−9]. Since optofluidic dye lasers exhibit 
the advantages of low cost, compact and portability, various 
kinds of feedback cavities including Fabry-Perot resonators 
[10−12], distributed feedback (DFB) gratings [13−16], 
optofluidic ring resonators (OFRRs) [17−19] and micro-
droplet cavities [20, 21] have been exploited, leading to 
significant advancements such as large wavelength tunabil-

ity [15, 22], single mode operation [16, 17] and fast- 
switching [21, 23] in optofluidic dye lasers. Optofluidic 
microring dye laser, first reported by Li et al. [24], has a 
great advantage compared with OFRR laser because it can 
be readily implemented on a microfluidic chip to make fully 
integrated and multifunctional device without worrying 
about the evaporation of the liquid dye. Bonding the mi-
croring structure with a flat PDMS slice ensures the 
long-term operation of the optofluidic microring laser, thus 
providing an attractive platform for integration with other 
microfluidic networks. However, on the other hand, the 
relatively low quality factor and large lasing threshold 
caused by the microring cavity losses limit the performance 
of the optofluidic microring dye laser. 

In this work, we present an optofluidic microring dye la-
ser with a unique structure by designing the bus waveguide 
across the center of the microring architecture. Compared 
with the previous optofluidic microring dye laser with the 
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bus waveguide, our design exhibits good optical confine-
ment in the contact region between bus waveguide and the 
microring (see Figure 1), which leads to a relatively low 
lasing threshold. We show that the microring laser emission 
can be obtained with a lasing threshold on the order of a few 
μJ mm−2. Furthermore, the chip was fabricated via conven-
tional soft lithography [25, 26] and can easily lead to mass 
production of the optofluidic microring dye laser. 

2  Experiment  

Figure 1(a) presents a schematic of the optofluidic mi-
croring dye laser consisting of a liquid-filled waveguide 
with an inlet and an outlet across the center of a microring 
resonator. Our design (Figure 1(b)) shows its unique feature 
of good light confinement in the contact region between the 
liquid waveguide and the microring compared with the pre-
vious research (Figure 1(c)). Two optofluidic dye lasers 
with different microring sizes were fabricated in this ex-
periment. One is a microring with an outer diameter of 160 
μm, the outer diameter of the other is 360 μm. The wave-
guides are 30 μm in width and all features are 20 μm in 
depth as shown in Figures 2(a) and 2(b). During the exper-
iment, laser dye rhodamine 6G (R6G) dissolved in benzyl 
alcohol with a concentration of 2 mmol L−1 was injected 
into the waveguides using a syringe pump (PHD 2000, 
Harvard Apparatus) as depicted in Figures 2(c) and (d). Due 
to the larger refractive index (RI) of the benzyl alcohol (RI 
= 1.54) compared with that of the polydimenthylsiloxane 
(PDMS) (RI = 1.41), light can be well confined in the liquid 
microring waveguide. 

The optofluidic micoring laser was pumped by a 
Nd:YAG laser (532 nm center wavelength, 6 ns pulse width 
and 10 Hz repetition rate). A convex lens with a focal length 
of 10 cm was employed to focus the light. In order to pre-
vent the PDMS chip from damage by the extreme energy 
intensity at the focal point, the distance between the PDMS 
chip and the convex lens was fixed at 7 cm. The chip was 

placed on a three-dimensional adjustment of racks and lifts 
so that the pump light could be accurately coupled onto the 
microring structure. The emitted laser light was collected by 
another convex lens from one edge of the chip as shown in 
Figure 2(c) and then transmitted to a high resolution spec-
trometer (AVaSpec 2048-FT, Avantes, spectral resolution = 
0.1 nm). 

3  Results and discussion 

For a microring laser, a stable oscillation in the cavity can 
be formed when the phase change for the light going a 
roundtrip in the microring is an integer multiple of 2π. The 
light waves are strengthened due to the interference, so the 
resonant wavelength of a microring is determined by the 
condition 

 mλ=2πneffR,  m=1, 2, 3 ,  (1) 

where λ is the resonant wavelength, neff represents the effec-
tive index and R is the outer radius of the microring. By 
derivation of both sides of eq. (1), we can get 

  ∆λ=λ2/2πneffR, (2) 

where ∆λ is the free spectral range (FSR), which is defined 
as the wavelength difference between two neighbour modes. 
Figure 3(a) shows the output spectrum of the optofluidic 
microring dye laser with an outer diameter of 160 μm at 
different pump energies. The measured FSR (0.42 nm) was 
exactly the same as the theoretical one calculated from eq. 
(2). The lasing threshold was measured to be 5.5 μJ mm−2 as 
depicted in Figure 3(b). Figure 3(c) presents the lasing 
spectrum of another optofluidic microring dye laser with an 
outer diameter of 360 μm. It has a similar lasing threshold 
of 4.0 μJ mm−2. In addition, the measured FSR (0.18 nm) 
was also well agreed with the theoretical calculation ac-
cording to eq. (2) (0.19 nm). 

In our future work, single mode optofluidic microring 
dye laser will be developed by using the Vernier effect.  

 

 

 

Figure 1  (a) Schematic diagram of the optofluidic microring dye laser; (b) optofluidic microring dye laser with the bus waveguide across the centre of the 
microring structure; (c) previous design of the optofluidic microring architecture by Li et al. in ref. [24], laser mode leak is more likely to happen in the con-
tact region between the microring structure and the bottom liquid waveguide. The white arrows inside the microring resonator indicate the direction of the 
light propagation. 
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Figure 2  Microscope image of the optofluidic microring dye laser with an outer diameter of (a) 160 μm and (b) 360 μm. Microscope image of the mi-
croring filled with laser dye R6G dissolved in benzyl alcohol with an outer diameter of (c) 160 μm and (d) 360 μm.  

 

 

Figure 3  (a),(c) Emission spectra of the microring laser versus pump energy density with an outer diameter of 160/360 μm. Inset: microscope images of 
the corresponding microrings; (b),(d) output intensity of the microring laser as a function of the absorbed pump energy with an outer diameter of 160/360 
μm. 
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Two microrings with slightly different diameters can be 
vertically coupled but physically disconnected via multi-
layer soft lithography techniques [27]. Real-time tunability 
in emission wavelength could be realized by changing the 
refractive index of the dye solution with the help of syringe 
pumps, which also makes the optofluidic microring dye 
laser an attractive platform in biosensor applications. 

4  Conclusions 

In summary, we demonstrate a novel optofluidic microring 
dye laser with reduced lasing threshold by designing the bus 
waveguide across the center of the microring structure, 
which results in a great reduction in cavity losses and thus 
enhances the performance of the optofluidic microring dye 
laser. A lasing threshold of 4−5 μJ mm−2 was achieved. 
Such a low threshold also shows strong competitiveness 
compared with other kinds of optofluidic dye lasers. Fur-
thermore, bonding the microring structure piece with a flat 
PDMS slice and the convenience in fabrication not only 
pave the way for stable long-term on-chip laser operation, 
but also open the door to integration with other microfluidic 
networks to create more functionalities. 
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