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Bloch oscillations in arrays of helical waveguides
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We study optical Bloch oscillations in the one- and two-dimensional arrays of helical waveguides with transverse
refractive index gradient. Longitudinal rotation of waveguides may lead to notable variations of the width of the
band of quasienergies and even its complete collapse for certain radii of the helix. This drastically affects the
amplitude and direction of Bloch oscillations. Thus they can be completely arrested for certain helix radii or
their direction can be reversed. If the array of helical waveguides is truncated and the near-surface waveguide is
excited, the helix radius determines whether periodic Bloch oscillations persist or are replaced by the irregular
near-surface oscillations.
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I. INTRODUCTION

Bloch oscillations (BOs) is a famous physical phenomenon
manifested as time-periodic evolution of a wave packet in
a spatially periodic potential in the presence of transverse
potential gradient (force). Physically the emergence of BOs
is connected with the appearance of equidistant spectrum with
localized eigenmodes in the presence of potential gradient.
Introduced for the first time for electrons moving in a crystal
under the action of a constant electric field [1,2], BOs were
observed for electrons in semiconductor superlattices [3,4],
shortly after observation in them of the Wannier-Stark ladder
[5,6]. As a universal wave phenomenon BOs were demon-
strated in a variety of physical systems, including ultracold
atoms [7,8], Bose-Einstein condensates held in optical lattices
[9,10], waveguide arrays [11–13] or optically induced lattices
[14], surface plasmon waves in plasmonic crystals [15], and
parity-time symmetric systems [16]. Waveguide arrays allow
observation of unusual types of BOs, including fractional
oscillations [17,18].

Optical BOs are most frequently considered in periodic
structures with constant transverse refractive index gradient,
such as effective gradient induced by circular waveguide
bending [19]. Nevertheless, even small periodic longitudinal
modulations of the parameters of waveguides may strongly
affect coupling between them that, in turn, changes the entire
dynamics of light propagation. The progress in research in
this direction is summarized in recent review [20]. Examples
of rich possibilities for control of light propagation arising
due to periodic longitudinal modulations of guiding structures
include diffraction management in zigzag arrays [21], dynamic
localization in periodically curved arrays [22], inhibition
of tunneling [23], Rabi oscillations [24,25], and topologi-
cal effects in arrays with helical waveguides [26]. Under
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appropriate conditions periodic longitudinal modulations may
induce dynamic band collapse, as suggested in honeycomb
[27] and rhombic [28] lattices. Since such collapse leads to
qualitative modification of the spectrum of the system it may
drastically affect BOs. Nevertheless, the effect of dynamic
band collapse caused by longitudinal modulation on BOs
remains largely unexplored, since many works utilized only
one type of modulation that leads either to constant or time-
periodic potential gradient in the system possessing flat bands
even in the absence of modulation [28,29].

In this paper we study the interplay between BOs and dy-
namic band collapse in a simple one- or two-dimensional array
of helical waveguides. When helix radius is zero, the bands
of such arrays are dispersive. We show that dynamic band
collapse taking place for certain helix radii is accompanied
by suppression of BOs. Each time when helix radius passes
the value at which band collapse occurs, the direction of BOs
is inverted. We also study BOs in truncated one-dimensional
waveguide arrays.

II. BLOCH OSCILLATION IN ONE-DIMENSIONAL
HELICAL WAVEGUIDES

We start our analysis by considering paraxial propagation
of light along the z axis in modulated waveguide array that can
be described by the following Schrödinger equation:

i
∂ψ

∂z
= − 1

2k0

(
∂2

∂x2
+ ∂2

∂y2

)
ψ − k0

n0
[�n(x,y,z) + αx]ψ.

(1)
Here ψ(x,y,z) is the envelope of the electric field E(x,y,z) =
ψ(x,y,z) exp(ik0z − iωt); k0 = 2πn0/λ is the wave number
in the material with refractive index n0; ω = 2πc/λ is the
frequency; λ is the wavelength. The function �n(x,y,z)
describes refractive index distribution in a waveguide array
consisting of helical waveguides with helix period Z and radius
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FIG. 1. (a) βZ versus normalized Bloch momentum kx/K (dis-
persion curves) for the 1D array of helical waveguides for different
radii of the helix R = 0 μm, 2 μm, 4 μm, 6.05 μm, 8 μm, and
10 μm. Arrow indicates the direction of increase of helix radius R.
(b) Scaled difference δβZ of quasienergies in the center and at the
edge of the Brillouin zone versus helix radius R. The inset shows
schematic illustration of the 1D waveguide array.

R [see the inset in Fig. 1(b) showing an example of one-
dimensional array]; the separation between waveguides is d.
The parameter α > 0 stands for the transverse refractive index
gradient in the x direction, that is required for the occurrence
of BOs. Equation (1) can be rewritten in the coordinate frame
x ′ = x + R cos(�z) and y ′ = y + R sin(�z) co-rotating with
the waveguides, where � = 2π/Z is the rotation frequency:

i
∂ψ

∂z
= − 1

2k0
[∇ + iA(z)]2ψ − k0R

2�2

2
ψ

− k0

n0
[�n(x,y) + αx]ψ. (2)

Here ∇ = (∂x,∂y); A(z) = k0R�[sin(�z), − cos(�z)] is an
effective gauge potential arising due to waveguide rotation
and proportional to the radius of helix R (we have omitted
primes in coordinates here). In this new coordinate frame the
waveguides are straight and refractive index profile is described
by a z-independent function �n(x,y) = p

∑
m exp[−[(x −

md)2 + y2]8/a16], where p is the refractive index modulation
depth in each waveguide and a is the waveguide width. We
further use parameters p = 7 × 10−4, a = 3.8 μm, n0 = 1.45,
and d = 17.5 μm typical for helical waveguide arrays that can
be created using developed technology of fs-laser writing [26].
For a wavelength λ = 633 nm, isolated waveguide with these
parameters supports only one guided mode with propagation
constant β0/k0 ≈ 1.34 × 10−4.

As mentioned above, helical waveguide arrays can be
created using the developed fs-laser writing technology [26].
The index gradient term of Eq. (2), αx, that is required for
the occurrence of Bloch oscillation can be introduced by
bending of helical array as a whole along parabolic trajectory
[30]. With this scheme, the index gradient α is inversely
proportional to the curvature of the bending. Another way to
introduce the index ramp across the waveguide array is to use

waveguide arrays based on thermo-optic polymers. Notice that
tunable optical Bloch oscillations have already been observed
in thermo-optic polymer arrays by applying a temperature
gradient across the waveguide array [13]. Thus fs-laser writing
technology can potentially be used to write helical waveguides
in such polymers, while control of the refractive index gradient
can be achieved by varying temperature at the opposite sides of
the array (the latter implies possibility of slow, but dynamical
variation of the gradient).

Further we employ the standard tight-binding approxima-
tion, assuming coupling only between nearest waveguides
in the array. We also assume that helix period Z = 0.4 cm
used here exceeds Rayleigh length, so that radiative losses are
low. Using tight-binding approximation and Pierls substitution
[31], one obtains for one-dimensional array the following
coupled-mode equations for the field amplitude ψn(z) in the
nth waveguide:

i
∂ψn(z)

∂z
=

∑
m=n±1

c ei[A(z)·rmn+(βm−βn)z]ψm(z), (3)

where c = 60.3 m−1 is the coupling constant between neigh-
boring (straight) waveguides evaluated for parameters of our
array, rmn is the displacement vector between waveguides m

andn, andβn = β0 + αk0dn/n0. For the gradientα = 0.2 m−1

one obtains αk0d/n0 ≈ 34.7 m−1.
First we address the impact of waveguide rotation on

the band structure of one-dimensional waveguide array and
consider its eigenmodes at α = 0 (i.e., βm − βn = 0) in Eq. (3).
Since the right-hand side of Eq. (3) is z-dependent, static
eigenmodes do not exist; instead, solutions have the form of
Floquet modes ψn(z) = exp(iβz + ikxnd)ϕn(z), where ϕn(z)
are z-periodic functions with a period equal to helix period
Z, and β is the quasienergy. The dependencies of β on
normalized momentum kx/K, where K = 2π/d is the width
of the Brillouin zone, are depicted in Fig. 1(a) for different
helix radii R. One can see that the width of the band strongly
depends on helix radius R. While in the absence of rotation
one observes usual dependence with β|kx=0 > β|kx=K/2, the
band experiences dynamic collapse around R ≈ 6.05 μm and
becomes completely flat in the tight-binding approximation.
With further increase of helix radius R the curvature of the
band is inverted and one obtains the dependence with β|kx=0 <

β|kx=K/2, but afterwards another band collapse occurs, i.e., the
effect repeats as R increases. This is clear from the dependence
of difference of quasienergies δβ = β|kx=0 − β|kx=K/2 in the
center and at the edge of the Brillouin zone, on helix radius
R shown in Fig. 1(b), where critical values of helix radius Rcr

corresponding to zero δβ can be identified. Band collapse is
naturally connected with renormalization of coupling constant
ceff = cJ0(k0R�d) caused by waveguide rotation by analogy
with renormalization caused by sinusoidal driving [20]. Criti-
cal values Rcr correspond to zeros of ceff.

To study the impact of dynamic band collapse on BOs
we now assume nonzero gradient α �= 0 in Eq. (3), i.e.,
nonzero difference of propagation constants βm − βn. First,
we address the case of narrow excitation of the central (n = 0)
waveguide of the 1D array, i.e., ψn=0 = 1 and ψn�=0 = 0 at z =
0. Dynamics of light propagation |ψn(z)| for single-waveguide
excitation is shown in Fig. 2 for various helix radii R. For
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FIG. 2. Dynamics of light propagation in the 1D array of helical
waveguides with a transverse refractive index gradient α = 0.2 m−1,
when only one central waveguide is excited (narrow excitation).
Helix radius R = 0 μm (a), 3 μm (b), 6.05 μm (c), and 10 μm (d).
(e) Maximal scaled width Wm/d of the wave packet, acquired upon
propagation, versus helix radius R.

straight waveguides [R = 0 μm, Fig. 2(a)], the input excitation
strongly expands, but then shrinks and completely restores the
input distribution after each period ZBloch = λ/(αd) of BOs.
As it was mentioned above, this restoration is a consequence of
formation of equidistant spectrum of localized modes with the
difference between neighboring eigenvalues equal to 2παd/λ.
When waveguides are made helical one still observes periodic
expansion and shrinkage of the beam with the same z period,
but the width of the wave packet in the point of its maximal
expansion z = ZBloch/2 gradually reduces with increase of R

[Fig. 2(b)]. BOs are completely suppressed when radius of
helix approaches critical value R = Rcr corresponding to band
collapse [Fig. 2(c)]. In this case, despite the presence of small
transverse gradient the excitations with all momenta kx acquire
the same phase shifts upon propagation and therefore do not
diffract. Further increase of helix radius R results in restoration
of BOs, but with substantially smaller maximal expansion of
the wave packet [Fig. 2(d)]. The influence of the helix radius R

on the maximal width of the wave packet Wm/d in the course
of BOs, acquired at the distance z = ZBloch/2, is illustrated in
Fig. 2(e). Notice that this curve qualitatively reproduces the
dependence of the width of quasienergy band |δβZ| on helix
radius from Fig. 1(b).

The rotation of waveguides in the array affects not only
amplitude of the BOs, but it can also invert their direction. To
illustrate this one has to consider evolution of broad excita-
tions that are known to exhibit transverse shifts during BOs,
rather than width oscillations. Figure 3 illustrates dynamics of
BOs for inputs in the form of sufficiently broad Gaussians
ψn,z=0 = exp[−(n/w)2], where w = 4. In the unmodulated
system such waveguide oscillates periodically in the transverse
plane, returning at z = ZBloch to its input location [Fig. 3(a)].
Oscillations occur in the region n > 0 in accordance with
positive refractive index gradient α > 0. As in the case

FIG. 3. Dynamics of light propagation in the 1D array of helical
waveguides with a transverse refractive index gradient α = 0.2,
when multiple waveguides are excited by a broad Gaussian beam.
Helix radius R = 0 μm (a), 3 μm (b), 6.05 μm (c), and 10 μm
(d), respectively. (e) Maximal scaled transverse displacement of the
wave-packet center Dm/d , acquired upon propagation, versus helix
radius R.

of narrow excitations, the amplitude of oscillations of the
wave-packet center decreases with increase of helix radius
R [Fig. 3(b)], and at R = Rcr the oscillations are completely
arrested [Fig. 3(c)]. Subsequent reappearance of BO atR > Rcr

is accompanied by the reversal of the direction of oscillations
[Fig. 3(d)]—a counterintuitive effect, taking into account the
facts that such oscillations occur in the direction opposite to the
refractive index gradient and that initial excitation had trivial
phase distribution. Overall scaled displacement Dm/d of the
wave-packet center calculated at the distance z = Zbloch/2 is
presented in Fig. 3(e) as a function of helix radius R. This
dependence closely matches the dependence of the difference
of quasienergies δβ = β|kx=0 − β|kx=K/2 on R from Fig. 1(b).
Thus, even though there are no static eigenmodes in helical
array, one can still assume that by analogy with BOs in static
arrays in our case the initial excitation with narrow spectrum in
the k space moves across the Brillouin zone [Fig. 1(a)] under
the action of small (αd � 1) refractive index gradient, and
that position of its center in the real space is approximately
described by the formula, analogous to that describing BOs in
continuous systems [1]:

D(z) = D0 + (n0/αk0)[β(kx0) − β(kx0 − Kαdz/λ)], (4)

where kx0 is the initial momentum and D0 is the initial
displacement at z = 0. This formula indeed gives very good
agreement with numerically calculated dependence shown in
Fig. 3(e). In particular, the points where displacement is zero
clearly correspond to R values at which β(kx) = const.

The inversion of the direction of BOs for R < Rcr and R >

Rcr implies qualitatively different dynamics when a Gaussian
beam is launched near the boundary of truncated helical array.
The propagation dynamics for such near-surface excitation is
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FIG. 4. Propagation dynamics around the edge of truncated 1D
array of helical waveguides with a transverse refractive index gradient
α = 0.2 for R = 0 μm (a), 3 μm (b), 6.05 μm (c), and 10 μm (d).
Broad Gaussian beam centered at the edge waveguide is used for array
excitation.

presented in Fig. 4, where we used the input wave packet
ψn,z=0 = exp[−(n − nc)2/w2] of width w = 4 for nc = 25,
where the array is truncated on the waveguide with n = 25 that
has the highest refractive index. BOs do not occur for R < Rcr

[Figs. 4(a) and 4(b)]. Instead, the wave packet experiences
generally aperiodic near-surface oscillations because gradient
stimulates displacement toward the surface that is compensated
by repulsion from the surface. At R = Rcr one observes
formation of a stationary linear surface wave [Fig. 4(c)].
Remnants of BOs are observable only for R > Rcr, when the
wave packet experiences displacement against gradient and
moves away from the surface of array. In this case the wave
packet periodically returns to the surface and oscillations are
nearly periodic [Fig. 4(d)].

III. BLOCH OSCILLATION IN TWO-DIMENSIONAL
HELICAL WAVEGUIDES

The control of BOs dynamics in helical waveguide arrays
is readily achievable also in the two-dimensional geome-
tries. Now we consider a square array of helical waveguides
[Fig. 5(a)], with a linear refractive index gradient in both x

and y directions. The propagation of light in such a struc-
ture is described by Eq. (1) with the term αx replaced by
αx + αy. For equal gradients the propagation dynamics in the
two-dimensional array is qualitatively similar to that in the
one-dimensional structure. When only the central waveguide
is excited [Fig. 5(d)], the wave packet first expands in both
transverse dimensions and achieves its maximal width at z =
ZBloch/2 [Figs. 5(b)–5(f)]. The initial distribution is reproduced
at z = ZBloch. The comparison of patterns for R = 0 μm
[Figs. 5(b) and 5(e)] and R = 5 μm [Figs. 5(c) and 5(f)]
cases reveals substantially smaller amplitude of BOs in the
array with helical waveguides. To illustrate that BOs strongly
depend on the helix radius we calculated the dependence of
the maximal radius of the wave packet Rm/d = [

∑
n

∑
k(n2 +

k2)|ψn,k|2/
∑

n

∑
k |ψn,k|2]1/2 acquired upon propagation onR

[Fig. 5(g)]. The arrest of BOs for helix radii corresponding to
band collapse is obvious.

FIG. 5. (a) Sketch of the 2D square waveguide array. Field
modulus distributions at z = ZBloch/4 (b),(c) and z = ZBloch/2 (e),(f)
for excitation of only one central waveguide [panel (d)] in the array
for helix radius R = 0 μm (b),(e) and 5 μm (c),(f). Maximal scaled
radius of the wave packet Rm/d at z = ZBloch/2 as a function of helix
radius R.

IV. CONCLUSION

Summarizing, we studied light propagation in the array
of helical waveguides with transverse refractive index gradi-
ent, both in 1D and 2D geometries. While wave packets in
such modulated systems still experience BOs, their amplitude
and direction strongly depend on waveguide rotation radius.
Complete arrest and inversion of BOs direction are reported.
Our finding suggests potential applications of the helical
waveguides in the control of path and direction of light beam
propagation. Since both amplitude and direction of Bloch
oscillation depend on the helix radius and period or refractive
index gradient, the straightforward application is the control of
the displacement of the beam in this complex artificial medium.
Thus, at quarter of Bloch oscillation cycle for broad beams one
can just tune the output displacement by changing the refractive
index gradient. For critical helix radius and period, the band
collapses becoming flat; thus the propagation of any light beam
in the structure in this regime is free of diffraction. This implies
the application of such arrays for undistorted transmission
of various patterns and even images. Among open problems
deserving future investigation is the impact of nonlinearity on
BOs in helical waveguide arrays.
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